
Reprint

APSK Coded Modulation Techniques:
From Simulink Models to DSP Implementation

P. Savvopoulos, M. Varsamou, N. Papandreou,
Th. Antonakopoulos and V.Makios

The European DSP Education and Research Symposium
– EDERS 2004

 BIRMINGHAM, UK , NOVEMBER 2004

Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright holders. All
persons copying this information are expected to adhere to the terms and constraints invoked by each
author's copyright. In most cases, these works may not be reposted or mass reproduced without the
explicit permission of the copyright holder.

APSK Coded Modulation Techniques: From Simulink Models to DSP

Implementation

P. Savvopoulos, M. Varsamou, N. Papandreou, T. Antonakopoulos and V. Makios

Research Academic Computer Technology Institute – CTI, 61 Riga Feraiou Str., 26100 Patras, Greece
Department of Electrical Engineering and Computers Technology, University of Patras, 26500 Rio - Patras,

Greece
e-mail:{psavvop, varsamou, npapandr, theodore, makios}@loe.ee.upatras.gr

ABSTRACT

This paper presents the application of a versatile and
flexible environment on prototyping data transmission
devices that are based on digital signal processors
(DSPs). This development environment integrates the
Matlab/Simulink tools with the TI DSPs in a unified set-
up that allows interaction between the model running on
Matlab/Simulink and the software modules running on
the DSP platform, through a data exchange mechanism
via the PCMCIA interface. The application example
described makes use of the APSK modulation technique
that has been decided for the second generation of
satellite broadband communications systems.

INTRODUCTION

The increasing demand for mobile, broadband
communications has made the satellite systems an
efficient and cost-effective solution for providing
communication services, especially in rural areas. The
capability of providing high speed and high bandwidth
communications to large geographical areas, where the
infrastructure of other communications systems is
negligible, emphasizes the flexibility and the potential of
such systems.
Great effort is devoted in the broadband satellite
communications area for developing new technologies
and perspectives, in order to enforce and extend the
market success over a wide range of different groups of
customers [1]. New efficient, yet complicated, algorithms
along with new enhanced standards arise, with the
demand of short time to market implementation, so as to
gain advantage over other competitive technologies [2].
Given the described status on demonstrating new
products in the field of satellite broadband
communications, the necessity for more processing power
makes DSP and/or FPGA platforms the best solution not
only for their verification and validation but also for the
critical phase of development and implementation.
According to this concept, this work presents a powerful
and versatile methodology for analyzing, developing and

prototyping of data communication and signal processing
systems on a flexible platform that consists of a single or
multiple DSP processors and reprogrammable logic,
communicating with the Matlab/Simulink tools as well.
As an illustrative example, the paper presents the
implementation of APSK coded modulation techniques
on a TMS320C6711 DSP processor, using the described
methodology.
The next two Sections present the architecture of the
development environment including the hardware
platform and its interconnection with the simulation tools,
while the last two Sections give a detailed description of
the implementation of APSK coded modulation
techniques using the aforementioned environment.

THE DEVELOPMENT ENVIRONMENT

Prototyping of communications and signal processing
systems is a complicated task that involves several
discrete design steps. Initially, an analytical system model
has to be developed, the various algorithms have to be
designed and the system behavior needs to be verified. As
a next step, the respective prototype which combines a
number of hardware and software functional modules has
to be implemented and tested in terms of its consistency
to the functionality of the analytical model. Due to the
complexity of their algorithms, modern communications
systems need long development and testing time for the
completion of a prototype. Regarding the modeling and
testing of a communications system, Matlab/Simulink
tools offer a high performance simulation environment
that supports the development and analysis of complex
multi-domain models [3].
In this paper, we discuss an environment that provides an
effective design and test approach, by exploiting the high-
performance simulation and modeling capabilities of the
Matlab/Simulink tools and the flexible modular hardware
architecture of a prototype platform. The design
methodology involves the use of the Matlab/Simulink
tools for building and verifying the analytical model and
then mapping selected system blocks into DSP processes
on the prototype platform. These Matlab/Simulink blocks
are being replaced by special library functions that are

responsible for the communication and synchronization
with their DSP counterparts [4]. Throughout the
development process we can utilize various Matlab-based
testing tools in order to verify the proper behavior of all
integration steps. This procedure continues until the high-
level model functions have been integrated into a
complete prototype.
In order to implement a low-cost and flexible prototype
environment, we developed a hardware platform that is
based on the high-performance floating point
TMS320C6711 processor with 900 MFLOPS processing
power [5], an analog front-end unit that includes two
ADC and two DAC channels and an FPGA module with
8 kwords of external Dual Port RAM. Data exchange
between the hardware platform and the computer that
hosts the Matlab/Simulink tools is performed through the
PCMCIA interface, which is implemented in the FPGA.
By these means, we achieve the extension of the available
memory space that can be commonly accessed by the
Matlab workspace via an appropriate I/O device driver.
The data exchange and synchronization between the
model and its blocks that are mapped into the prototype
platform, is accomplished through Matlab/Simulink
custom functions that associate workspace variables with
memory locations and structures at the interface memory
space. The DPRAM contains all necessary user and
control data required for the efficient implementation of
the mixed-type model. In the current version of the
prototype platform, all subsystems are implemented as
DSP functions that are synchronized by the
Matlab/Simulink environment which coordinates the
whole procedure.
The most commonly used development set-up, which
corresponds to a pair of communicating devices
(implemented in the same hardware platform) and a real-
time channel emulator (implemented in a separate
platform) is shown in Figure 1, while it can be extended
to support a separate platform for each communicating
device. This set-up provides the capability of designing

flexible component level architectures, thus enabling the
implementation and verification of several end-to-end
communication applications.

DSP INTEGRATION IN THE MATLAB/SIMULINK

ENVIRONMENT

In a mixed-level design that includes a Matlab/Simulink
model and various processing modules that are
implemented as DSP functions in the hardware platform,
synchronization plays a key role in effective and proper
system prototyping. Synchronization has two different
aspects: synchronization of the various functions
performed at the same DSP processor-environment, and
synchronization that is related to the data exchange
between the Matlab workspace and the DSP platform.

Multi-threading in the DSP environment

The progressive substitution of several Simulink blocks
by their respective DSP implementations, results in the
development of DSP modules that perform a number of
different functions simultaneously, often in response to
external events, such as the availability of data or the
presence of a control signal. These functions are called
threads and multi-threaded programs run on a single
processor by allowing higher-priority threads to preempt
lower-priority ones and by allowing various types of
interaction between threads, including blocking,
communication, and synchronization. The used DSP
processor supports multi-threading applications through
DSP/BIOS that is supplied along with the Code
Composer Development Suite. DSP/BIOS is a scalable
real-time kernel, which is designed for applications that
require real-time scheduling and synchronization, host-to-
target communication, and real-time instrumentation. It
provides preemptive multi-threading and system-level
services such as memory management, communication
mechanisms and interrupt handling [6]. Using these
kernel features, distinct submodules of a Matlab/Simulink

Analog Signals

DSP Peripheral
 Interface

FPGA Board

TMS320C6711

Analog Front End

D/A

A/DFPGA

PCMCIA
Interface

MATLAB

DSP Peripheral
 Interface

FPGA Board

A/D

D/A FPGA

PCMCIA
Interface

MATLAB

TMS320C6711

Analog Front End

Transceiver Channel Emulator

Figure 1. The complete development environment

model can be mapped to independent or cooperative DSP
functions that are executed concurrently.

Simulink and hardware platform synchronization

Synchronization should not only be achieved among
distinct DSP functions, but also between the
Matlab/Simulink functions and each DSP module, in
order to ensure that the dataflow through the different
stages of the system model is consistent with the system's
specifications.
In our environment, data exchange is performed through
the PCMCIA interface. In the high-level model, the
blocks that are translated into DSP software modules in
the prototyping platform are replaced by special functions
that utilize a PCMCIA driver, in order to access the
PCMCIA device. In the prototyping platform a custom
FPGA module performs the interface logic. This custom
module provides the necessary circuits for the PCMCIA
initialization, signal transactions and extension of the
available I/O memory space. It also controls the dual-port
memory (DPRAM), which is accessed by both the
simulation workspace and the custom DSP modules and
provides the storage area of data and control information
that is exchanged between the simulation environment
and the hardware platform. In fact, the DPRAM provides
the physical interface between the DSP processes,
translated from model blocks, and their simulation
environment.
In Figure 2, we demonstrate the general concept of the
information exchange between the simulation

environment and the DSP-implemented blocks of the
system prototype. Each system module is associated with
a specific region in the DPRAM, which contains the
interface signals between that module and its simulation
environment. In general, we distinguish the following
interface signals regions:
• Control signals region, which contains control

information and data for the configuration of the
system modules and the initialization of the
communication between the modules and the
simulation environment.

• Status signals region, which contains the status
information of the system modules. This information
is mainly used for synchronization of the dataflow
between the simulation model and the prototyping
platform. Furthermore, it can be utilized for the
debugging of the subsystem's functionality.

• Data in/out signals region, which contains the data
provided to or generated from the corresponding
system module in order to participate in the model's
dataflow.

When a certain block of a Matlab/Simulink model, like
an APSK modulator as in the following application
example, is replaced by the respective DSP function,
synchronization is achieved by exchanging control
information using the DPRAM. Matlab produces the data
to be transferred to the DSP module for processing, and
then triggers its execution until the response is received.

DPRAM

MATLAB
Simulation and

Testing
Environment

PCMCIA driver

DSP/BIOS

Prototyping platform

6711 DSP processor

Module-2
DSP Task

Module-1
DSP Task

FPGA Host
Interface

Memory
interface

logic

Bootload

Module-1

Control Signals

Status Signals

Data In/Out Signals

Module-2

Control Signals

Status Signals

Data In/Out Signals

Bootload

Control Signals

Status Signals

Data In/Out Signals

Figure 2. The Matlab-to-DSP interface

In addition to the model-specific DSP implementations, a
separate bootload DSP module has been developed that
enables the configuration of the DSP processor with new
executables through the MATLAB environment and the
PCMCIA interface. A special MATLAB function reads
the Code Composer generated executable files and
transfers the binary data to the DPRAM along with
information about their organization. Then the DSP
bootload program writes the data to the specified memory
locations and transfers the control to the new application
program. The synchronization between MATLAB and
the bootload is achieved through a protocol that uses
control information mapped on special locations in the
DPRAM. In the future, we are planning to extend the
FPGA-based interface capabilities, by connecting the
JTAG signals of the DSP to a hardware module that will
be accessible via the PCMCIA, thus providing more
debugging functionality to our development environment.

THE SYSTEM MODEL

For demonstrating the applicability of the presented
design methodology and the use of the hardware
prototype platform in the development and
implementation of a digital communications system, we

use a satellite communication system model using a 16-
APSK modulation technique, as a representative example
(Figure 3).
The first generation of European broadband satellite
systems, which was based on the DVB-S standard in the
early 90’s, has already been deployed in Europe and other
parts of the world. Many devices supporting the functions
and services of DVB-S standard are working reliably and
properly with success for many years, which resulted to
the wide spreading of the use of DVB-S satellite
technology for broadband communications. In the
beginning of 2004, the second generation of broadband
satellite systems, called DVB-S2 [2], came along in order
to improve and expand the initial DVB-S standard. The
aim of the new standardization was to increase the
efficiency and flexibility of such systems based on the
peculiarities of the satellite link [7]. Link particularities,
like satellite and hub station non-linear distortion,
introduced by high power amplifiers (HPAs), the channel
fading distortions and carrier phase noise at each receiver,
are taken into account in the design process.
Given the intention for evolution of satellite
communications, the new perspective in satellite system
design introduces high order modulation such as the 16-

Power Spectrum

Downlink Path

Transmitter

Terminal Downlink Receiver

Hub Station Uplink Transmitter

Bent-Pipe Satellite

Uplink Path

BER Measurements

BER

Errors

Symbols

End to End Constellation

EDERS 2004
 Model Parameters File

Phase/
Frequency

Offset

Uplink
Doppler and
Phase Error

Free Space
Path Loss
206 dB

Uplink
Path

-K-

Terminal Rx Dish
Antenna Gain

Magnitude
AGC

Select AGC

Noise
Temperature

290 K

Satelli te Receiver
Temp

Noise
Temperature

290 K
Satell ite Receiver

System Temp

TWTA

Satellite HPA

-K-

Sat Rx Dish
Antenna Gain

DC
Removal

Sat DC Offset
Comp.

Magnitude
AGC

Sat AGC

-K-

Sat Tx Dish
Antenna Gain

Random
Integer Square root

Raised Cosine
Transmit Filter

Square root

Raised Cosine
Receive Filter

Phase
Noise

Phase
Noise

16-APSK
Modulator

Modulator

I/Q
Imbalance

I/Q
Imbalance

-K-

Hub Tx Dish
Antenna Gain

TWTA

Hub HPA

Rx_Demod

Tx_ModRF_link_Tx

Rx_RRC

Tx_RRC

RF_link_Rx

[Tx_Mod]

[RF_link_Rx]

[Tx_RRC] [RF_link_Tx]

[Rx_Demod][Rx_RRC]

 Error Rate
 Calculation

Tx

Rx

Rst

Free Space
Path Loss
205 dB

Downlink
Path

Phase/
Frequency

Offset

Downlink
Doppler and
Phase Error

Phase/
Frequency

Offset

Doppler and Phase
Compensation

16-APSK
Demodulator

Demodulator

DC
Removal

DC Offset
Comp.

0.0001524

1

6560

Figure 3. The application example system model

ary and 32-ary APSK (Amplitude Phase Shift Keying).
This modulation technique, taking into consideration the
satellite channel characteristics, has been proven [8] that
minimizes link losses when proper digital signal
processing algorithms are being employed on both ends
of a point-to-point link. The 16-APSK modulation
technique that is implemented on the described
development environment, consists of two rings of PSK
modulation. The inner ring includes 4 constellation points
with 90o degrees difference between them, while the
outer ring includes 12 points with 30o difference. Many
studies [9] proved that this modulation scheme is resilient
to the non-linearity of the high power amplifiers that are
used on the ground station and the transponder lying on
the space segment. It is also reported that APSK
modulations outperform classical modulation types (16-
QAM, 16-PSK) currently used in satellite links.
A typical GEO (Geostationary Earth Orbit) satellite
forward channel system is modeled in the
Matlab/Simulink environment. The model is based on a
transmitter (Hub station Uplink Transmitter), using the
aforementioned modulation type, that sends traffic to a
far-end receiver (Terminal Downlink Receiver), making
use of the respective demodulation. The connection in the
forward channel is managed through a space segment of a
bent-pipe satellite that interfaces the two terrestrial
stations. This procedure takes place on a transponder that
receives the original signal, amplifies it and drives it
through downlink path to the terminal, using another
carrier frequency.
The respective Hub station model sends data to the
terminal derived from a binary random source generator,
that produces data frames of integer numbers (symbols)
consisting of 4 bits each. The 16-APSK modulator
translates the received data into Gray-encoded
constellation points, which comprise the I and Q
transmission channels. The outputs of the modulator
passes through square-root raised cosine band-limiting
filters, used to shape the output signal in order to
minimize the ISI (Inter-Symbol Interference) throughout
the satellite link. An HPA module amplifies the filtered
output. Non linear behavior is observed due to the fact
that the HPA of the ground station operates near its
saturation point, introducing non linear distortion. The
last module of the transmitter model is the parabolic dish
antenna.
Uplink and downlink paths introduce two kinds of
impairments that result to signal attenuation at the
receiver of the transponder and the terminal, respectively.
These impairments are modeled in our system as two
different modules per path, each one contributing with a
different way on the overall signal distortion. One source
of impairment in the satellite link is the free space loss
which depends on the carrier frequency (different for the
two links) and the distance between the hub/terminal and
the satellite. Additional source of impairment is the phase
and frequency offsets introduced on the traveling signal,

due to the relevant movement of the space segment
(Doppler Effect).
Within the satellite, the transponder is responsible for the
reception of the transmitted signal through the satellite
receiver dish antenna. As the IF signal is generated, a DC
removal and a closed-loop AGC module (Automatic Gain
Control) adjust the incoming signal for proper feeding of
the HPA-TWTA of the transponder. At this stage
additional non linear distortion is inserted on the
transmitted signal. Afterwards the dish antenna transmits
the signal over the downlink path of the forward channel.
The signal then reaches the terminal’s far-end receiver
where various functions are executed, in order to
demodulate the incoming signal and extract the initially
transmitted data. In the current version of our model, no
error correction mechanisms are used.

IMPLEMENTATION ISSUES
Following the exhaustive verification of the described
satellite communication system model in the
Matlab/Simulink environment, various submodules can
be substituted by their DSP software counterparts.
Specifically, the 16-APSK modulator at the transmitter
and the respective demodulator at the receiver, along with
their Square Root Raised Cosine (S-RRC) filters are
replaced with relevant implementations on the same DSP
environment. Figure 4 presents the key features of the
implementation process Two DSP tasks are formed, one
for the transmitter side and the other for the receiver that
run concurrently and independently on the same DSP.
The internal logic of the modulator is based on the
representation of 16 different symbols with a number of
16 constellation points into a look up table. In other
words, for every single integer number (symbol) coming
from the random integer source generator, a complex
number is extracted. Each of the components of the
complex output, as soon as it is upsampled by a specific
factor, it passes through an S-RRC shaping pulse filter,
reducing ISI through the satellite forward channel, and a
new complex output is produced.
The inverse operation is performed at the receiver side
before the execution of the symbol recovering function.
Initially, the S-RRC is applied and immediately after the
downsampler restores the sampling rate of the original
transmitted signal with the same factor used on the
transmitter side. The function of the demodulator is more
complicated, since the minimum distance of each
received symbol from all points of the constellation
diagram has to be determined. That distance is related to
the symbol most probably sent.
In order to achieve the goal of two independent
processing functions running concurrently on the same
DSP processor, we exploited the capabilities of the
DSP/BIOS real-time kernel feature, supported by the
TMS320C6xxx DSP processors. The DSP/BIOS
schedules the timing execution of the two software
modules and treats them as two different threads with the

same priority level. Both tasks use different control,
status and data exchange regions in the DPRAM for
achieving interconnection with the Matlab/Simulink
simulation environment.

CONCLUSIONS
In this work, a dynamic development environment for
prototyping communications systems, consisting of
Matlab/Simulink tools being interconnected with a
flexible hardware platform, was presented. The analyzed
design methodology gives the opportunity to develop
communications systems in a progressive manner,
allowing the transformation of a high-level simulation
model after extensive tests and verification to a fully
functional, reliable system prototype. This perspective on
system realization can be extremely useful for the design
of complicated and resource demanding communications
systems. The described environment can also be used for
significant educational purposes on system modeling,
validation and prototyping.

REFERENCES
[1]. Alberto Morello and Ulrich Reimers, “DVB-S2, the

second generation standard for satellite broadcasting and
unicasting”, International Journal of Satellite
Communications and Networking, Special Issue: The
DVB-S2 Standard for Broadband Satellite Systems, Vol.
22, Issue 3, 2004, pp. 249-268.

[2]. Draft ETSI ΕΝ 302 307 (V1.1.1): “Digital Video
Broadcasting (DVB); Second generation framing
structure, channel coding and modulation systems for

Broadcasting, Interactive services, News Gathering and
other broadband satellite applications”, European
Standard (Telecommunications series), June 2004.

[3]. M. Varsamou, P. Savvopoulos, N. Papandreou and T.
Antonakopoulos, “From Matlab/Simulink Models to
Prototype Implementation: A Communication Systems
Development Environment”, The Nordic MATLAB
Conference 2003, Copenhagen, Denmark, October 2003.

[4]. The Mathworks Inc., Writing S-Functions, Revised for
Simulink 5.0 (Release 13), July 2002.

[5]. Orsys GmbH., User’s Guide Micro-Line
C6711CPU/C6712CPU, High Performance Digital
Signal Processor Family, Rev 4.02, Mar. 2003.

[6]. Texas Instruments, Inc., TMS320 DSP/BIOS User’s
Guide, Nov 2002.

[7]. Ernest Chen, Joshua L. Koslov, Vittoria Mignone and
Joseph Santoru, “DVB-S2 backward-compatible modes:
a bride between the present and the future”, International
Journal of Satellite Communications and Networking,
Special Issue: The DVB-S2 Standard for Broadband
Satellite Systems, Vol. 22, Issue 3, 2004, pp. 341-365.

[8]. E. Casini, E. De Gaudenzi and A. Ginesi, “DVB-S2
modem algorithms design and performance over typical
satellite channels”, International Journal of Satellite
Communications and Networking, Special Issue: The
DVB-S2 Standard for Broadband Satellite Systems, Vol.
22, Issue 3, 2004, pp. 281-318.

[9]. R. De Gaudenzi, A. Guillen i Fabregas, A. Martinez
Vicente, B. Ponticelli, “APSK Coded Modulation
Schemes for Nonlinear Satellite Channels with High
Power and Spectral Efficiency”, in the Proc. of the AIAA
Satellite Communication Systems Conference 2002,
Montreal, Canada, May 2002.

Hub Station Uplink Transmitter

Random
Integer Square root

Raised Cosine
Transmit Filter

16-APSK
Modulator

Modulator
[Tx_Mod][RF_link_Tx]

16-APSK
MODULATOR

S/W TASK

Prototype Hardware Platform

DSP/BIOS

16-APSK
DEMODULATOR

S/W TASK

TMS320C6711 DSP Environment
Timer

CPU Execution
Sceduler

(Timer ISR)

FPGA

PCMCIA
IF

MATLAB/SIMULINK
Host Computer

CPU Execution of Modulator/Demodulator Tasks in Time

Mod Dem Mod Dem Mod Dem

High Level
Hub Station

System Model

High Level
Terminal Receiver

System Model

16-APSK
Modulator

User S-Function

Matlab/
Simulink

Environment

Terminal Downlink Receiver

Square root

Raised Cosine
Receive Filter

[Rx_Demod] [Rx_RRC]

[RF_link_Rx]

Phase/
Frequency

Offset

Doppler and Phase
Compensation

16-APSK
Demodulator

Demodulator

16-APSK
Demodulator

User S-Function

PCMCIA
Interface

Square root

DPRAM

Square root

To the rest
of the System Model

From the rest
of the System Model

Figure 4. Implementation of the application example

