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ABSTRACT 

This paper presents the application of a versatile and 
flexible environment on prototyping data transmission 
devices that are based on digital signal processors 
(DSPs). This development environment integrates the 
Matlab/Simulink tools with the TI DSPs in a unified set-
up that allows interaction between the model running on 
Matlab/Simulink and the software modules running on 
the DSP platform, through a data exchange mechanism 
via the PCMCIA interface. The application example 
described makes use of the APSK modulation technique 
that has been decided for the second generation of 
satellite broadband communications systems. 
 
 

INTRODUCTION 

The increasing demand for mobile, broadband 
communications has made the satellite systems an 
efficient and cost-effective solution for providing 
communication services, especially in rural areas. The 
capability of providing high speed and high bandwidth 
communications to large geographical areas, where the 
infrastructure of other communications systems is 
negligible, emphasizes the flexibility and the potential of 
such systems. 
Great effort is devoted in the broadband satellite 
communications area for developing new technologies 
and perspectives, in order to enforce and extend the 
market success over a wide range of different groups of 
customers [1]. New efficient, yet complicated, algorithms 
along with new enhanced standards arise, with the 
demand of short time to market implementation, so as to 
gain advantage over other competitive technologies [2]. 
Given the described status on demonstrating new 
products in the field of satellite broadband 
communications, the necessity for more processing power 
makes DSP and/or FPGA platforms the best solution not 
only for their verification and validation but also for the 
critical phase of development and implementation. 
According to this concept, this work presents a powerful 
and versatile methodology for analyzing, developing and 

prototyping of data communication and signal processing 
systems on a flexible platform that consists of a single or 
multiple DSP processors and reprogrammable logic, 
communicating with the Matlab/Simulink tools as well. 
As an illustrative example, the paper presents the 
implementation of APSK coded modulation techniques 
on a TMS320C6711 DSP processor, using the described 
methodology. 
The next two Sections present the architecture of the 
development environment including the hardware 
platform and its interconnection with the simulation tools, 
while the last two Sections give a detailed description of 
the implementation of APSK coded modulation 
techniques using the aforementioned environment. 
 

THE DEVELOPMENT ENVIRONMENT 

Prototyping of communications and signal processing 
systems is a complicated task that involves several 
discrete design steps. Initially, an analytical system model 
has to be developed, the various algorithms have to be 
designed and the system behavior needs to be verified. As 
a next step, the respective prototype which combines a 
number of hardware and software functional modules has 
to be implemented and tested in terms of its consistency 
to the functionality of the analytical model. Due to the 
complexity of their algorithms, modern communications 
systems need long development and testing time for the 
completion of a prototype. Regarding the modeling and 
testing of a communications system, Matlab/Simulink 
tools offer a high performance simulation environment 
that supports the development and analysis of complex 
multi-domain models [3]. 
In this paper, we discuss an environment that provides an 
effective design and test approach, by exploiting the high-
performance simulation and modeling capabilities of the 
Matlab/Simulink tools and the flexible modular hardware 
architecture of a prototype platform. The design 
methodology involves the use of the Matlab/Simulink 
tools for building and verifying the analytical model and 
then mapping selected system blocks into DSP processes 
on the prototype platform. These Matlab/Simulink blocks 
are being replaced by special library functions that are 



responsible for the communication and synchronization 
with their DSP counterparts [4]. Throughout the 
development process we can utilize various Matlab-based 
testing tools in order to verify the proper behavior of all 
integration steps. This procedure continues until the high-
level model functions have been integrated into a 
complete prototype. 
In order to implement a low-cost and flexible prototype 
environment, we developed a hardware platform that is 
based on the high-performance floating point 
TMS320C6711 processor with 900 MFLOPS processing 
power [5], an analog front-end unit that includes two 
ADC and two DAC channels and an FPGA module with 
8 kwords of external Dual Port RAM. Data exchange 
between the hardware platform and the computer that 
hosts the Matlab/Simulink tools is performed through the 
PCMCIA interface, which is implemented in the FPGA. 
By these means, we achieve the extension of the available 
memory space that can be commonly accessed by the 
Matlab workspace via an appropriate I/O device driver. 
The data exchange and synchronization between the 
model and its blocks that are mapped into the prototype 
platform, is accomplished through Matlab/Simulink 
custom functions that associate workspace variables with 
memory locations and structures at the interface memory 
space. The DPRAM contains all necessary user and 
control data required for the efficient implementation of 
the mixed-type model. In the current version of the 
prototype platform, all subsystems are implemented as 
DSP functions that are synchronized by the 
Matlab/Simulink environment which coordinates the 
whole procedure.  
The most commonly used development set-up, which 
corresponds to a pair of communicating devices 
(implemented in the same hardware platform) and a real-
time channel emulator (implemented in a separate 
platform) is shown in Figure 1, while it can be extended 
to support a separate platform for each communicating 
device. This set-up provides the capability of designing 

flexible component level architectures, thus enabling the 
implementation and verification of several end-to-end 
communication applications.  

 
DSP INTEGRATION IN THE MATLAB/SIMULINK 

ENVIRONMENT 

In a mixed-level design that includes a Matlab/Simulink 
model and various processing modules that are 
implemented as DSP functions in the hardware platform, 
synchronization plays a key role in effective and proper 
system prototyping. Synchronization has two different 
aspects: synchronization of the various functions 
performed at the same DSP processor-environment, and 
synchronization that is related to the data exchange 
between the Matlab workspace and the DSP platform. 
 
Multi-threading in the DSP environment 

The progressive substitution of several Simulink blocks 
by their respective DSP implementations, results in the 
development of DSP modules that perform a number of 
different functions simultaneously, often in response to 
external events, such as the availability of data or the 
presence of a control signal. These functions are called 
threads and multi-threaded programs run on a single 
processor by allowing higher-priority threads to preempt 
lower-priority ones and by allowing various types of 
interaction between threads, including blocking, 
communication, and synchronization. The used DSP 
processor supports multi-threading applications through 
DSP/BIOS that is supplied along with the Code 
Composer Development Suite. DSP/BIOS is a scalable 
real-time kernel, which is designed for applications that 
require real-time scheduling and synchronization, host-to-
target communication, and real-time instrumentation. It 
provides preemptive multi-threading and system-level 
services such as memory management, communication 
mechanisms and interrupt handling [6]. Using these 
kernel features, distinct submodules of a Matlab/Simulink 
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Figure 1. The complete development environment 



model can be mapped to independent or cooperative DSP 
functions that are executed concurrently. 

Simulink and hardware platform synchronization 

Synchronization should not only be achieved among 
distinct DSP functions, but also between the 
Matlab/Simulink functions and each DSP module, in 
order to ensure that the dataflow through the different 
stages of the system model is consistent with the system's 
specifications.  
In our environment, data exchange is performed through 
the PCMCIA interface. In the high-level model, the 
blocks that are translated into DSP software modules in 
the prototyping platform are replaced by special functions 
that utilize a PCMCIA driver, in order to access the 
PCMCIA device. In the prototyping platform a custom 
FPGA module performs the interface logic. This custom 
module provides the necessary circuits for the PCMCIA 
initialization, signal transactions and extension of the 
available I/O memory space. It also controls the dual-port 
memory (DPRAM), which is accessed by both the 
simulation workspace and the custom DSP modules and 
provides the storage area of data and control information 
that is exchanged between the simulation environment 
and the hardware platform. In fact, the DPRAM provides 
the physical interface between the DSP processes, 
translated from model blocks, and their simulation 
environment. 
In Figure 2, we demonstrate the general concept of the 
information exchange between the simulation 

environment and the DSP-implemented blocks of the 
system prototype. Each system module is associated with 
a specific region in the DPRAM, which contains the 
interface signals between that module and its simulation 
environment. In general, we distinguish the following 
interface signals regions: 
• Control signals region, which contains control 

information and data for the configuration of the 
system modules and the initialization of the 
communication between the modules and the 
simulation environment. 

• Status signals region, which contains the status 
information of the system modules. This information 
is mainly used for synchronization of the dataflow 
between the simulation model and the prototyping 
platform. Furthermore, it can be utilized for the 
debugging of the subsystem's functionality. 

• Data in/out signals region, which contains the data 
provided to or generated from the corresponding 
system module in order to participate in the model's 
dataflow. 

When a certain block of a Matlab/Simulink model, like 
an APSK modulator as in the following application 
example, is replaced by the respective DSP function, 
synchronization is achieved by exchanging control 
information using the DPRAM. Matlab produces the data 
to be transferred to the DSP module for processing, and 
then triggers its execution until the response is received. 
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Figure 2. The Matlab-to-DSP interface 



In addition to the model-specific DSP implementations, a 
separate bootload DSP module has been developed that 
enables the configuration of the DSP processor with new 
executables through the MATLAB environment and the 
PCMCIA interface. A special MATLAB function reads 
the Code Composer generated executable files and 
transfers the binary data to the DPRAM along with 
information about their organization. Then the DSP 
bootload program writes the data to the specified memory 
locations and transfers the control to the new application 
program. The synchronization between MATLAB and 
the bootload is achieved through a protocol that uses 
control information mapped on special locations in the 
DPRAM. In the future, we are planning to extend the 
FPGA-based interface capabilities, by connecting the 
JTAG signals of the DSP to a hardware module that will 
be accessible via the PCMCIA, thus providing more 
debugging functionality to our development environment. 
 

THE SYSTEM MODEL 

For demonstrating the applicability of the presented 
design methodology and the use of the hardware 
prototype platform in the development and 
implementation of a digital communications system, we 

use a satellite communication system model using a 16-
APSK modulation technique, as a representative example 
(Figure 3). 
The first generation of European broadband satellite 
systems, which was based on the DVB-S standard in the 
early 90’s, has already been deployed in Europe and other 
parts of the world. Many devices supporting the functions 
and services of DVB-S standard are working reliably and 
properly with success for many years, which resulted to 
the wide spreading of the use of DVB-S satellite 
technology for broadband communications. In the 
beginning of 2004, the second generation of broadband 
satellite systems, called DVB-S2 [2], came along in order 
to improve and expand the initial DVB-S standard. The 
aim of the new standardization was to increase the 
efficiency and flexibility of such systems based on the 
peculiarities of the satellite link [7]. Link particularities, 
like satellite and hub station non-linear distortion, 
introduced by high power amplifiers (HPAs), the channel 
fading distortions and carrier phase noise at each receiver, 
are taken into account in the design process. 
Given the intention for evolution of satellite 
communications, the new perspective in satellite system 
design introduces high order modulation such as the 16-
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Figure 3. The application example system model 



ary and 32-ary APSK (Amplitude Phase Shift Keying). 
This modulation technique, taking into consideration the 
satellite channel characteristics, has been proven [8] that 
minimizes link losses when proper digital signal 
processing algorithms are being employed on both ends 
of a point-to-point link. The 16-APSK modulation 
technique that is implemented on the described 
development environment, consists of two rings of PSK 
modulation. The inner ring includes 4 constellation points 
with 90o degrees difference between them, while the 
outer ring includes 12 points with 30o difference. Many 
studies [9] proved that this modulation scheme is resilient 
to the non-linearity of the high power amplifiers that are 
used on the ground station and the transponder lying on 
the space segment. It is also reported that APSK 
modulations outperform classical modulation types (16-
QAM, 16-PSK) currently used in satellite links. 
A typical GEO (Geostationary Earth Orbit) satellite 
forward channel system is modeled in the 
Matlab/Simulink environment. The model is based on a 
transmitter (Hub station Uplink Transmitter), using the 
aforementioned modulation type, that sends traffic to a 
far-end receiver (Terminal Downlink Receiver), making 
use of the respective demodulation. The connection in the 
forward channel is managed through a space segment of a 
bent-pipe satellite that interfaces the two terrestrial 
stations. This procedure takes place on a transponder that 
receives the original signal, amplifies it and drives it 
through downlink path to the terminal, using another 
carrier frequency. 
The respective Hub station model sends data to the 
terminal derived from a binary random source generator, 
that produces data frames of integer numbers (symbols) 
consisting of 4 bits each. The 16-APSK modulator 
translates the received data into Gray-encoded 
constellation points, which comprise the I and Q 
transmission channels. The outputs of the modulator 
passes through square-root raised cosine band-limiting 
filters, used to shape the output signal in order to 
minimize the ISI (Inter-Symbol Interference) throughout 
the satellite link. An HPA module amplifies the filtered 
output. Non linear behavior is observed due to the fact 
that the HPA of the ground station operates near its 
saturation point, introducing non linear distortion. The 
last module of the transmitter model is the parabolic dish 
antenna. 
Uplink and downlink paths introduce two kinds of 
impairments that result to signal attenuation at the 
receiver of the transponder and the terminal, respectively. 
These impairments are modeled in our system as two 
different modules per path, each one contributing with a 
different way on the overall signal distortion. One source 
of impairment in the satellite link is the free space loss 
which depends on the carrier frequency (different for the 
two links) and the distance between the hub/terminal and 
the satellite. Additional source of impairment is the phase 
and frequency offsets introduced on the traveling signal, 

due to the relevant movement of the space segment 
(Doppler Effect). 
Within the satellite, the transponder is responsible for the 
reception of the transmitted signal through the satellite 
receiver dish antenna. As the IF signal is generated, a DC 
removal and a closed-loop AGC module (Automatic Gain 
Control) adjust the incoming signal for proper feeding of 
the HPA-TWTA of the transponder. At this stage 
additional non linear distortion is inserted on the 
transmitted signal. Afterwards the dish antenna transmits 
the signal over the downlink path of the forward channel. 
The signal then reaches the terminal’s far-end receiver 
where various functions are executed, in order to 
demodulate the incoming signal and extract the initially 
transmitted data. In the current version of our model, no 
error correction mechanisms are used. 
 

IMPLEMENTATION ISSUES 
Following the exhaustive verification of the described 
satellite communication system model in the 
Matlab/Simulink environment, various submodules can 
be substituted by their DSP software counterparts. 
Specifically, the 16-APSK modulator at the transmitter 
and the respective demodulator at the receiver, along with 
their Square Root Raised Cosine (S-RRC) filters are 
replaced with relevant implementations on the same DSP 
environment. Figure 4 presents the key features of the 
implementation process Two DSP tasks are formed, one 
for the transmitter side and the other for the receiver that 
run concurrently and independently on the same DSP.  
The internal logic of the modulator is based on the 
representation of 16 different symbols with a number of 
16 constellation points into a look up table. In other 
words, for every single integer number (symbol) coming 
from the random integer source generator, a complex 
number is extracted. Each of the components of the 
complex output, as soon as it is upsampled by a specific 
factor, it passes through an S-RRC shaping pulse filter, 
reducing ISI through the satellite forward channel, and a 
new complex output is produced. 
The inverse operation is performed at the receiver side 
before the execution of the symbol recovering function. 
Initially, the S-RRC is applied and immediately after the 
downsampler restores the sampling rate of the original 
transmitted signal with the same factor used on the 
transmitter side. The function of the demodulator is more 
complicated, since the minimum distance of each 
received symbol from all points of the constellation 
diagram has to be determined. That distance is related to 
the symbol most probably sent.  
In order to achieve the goal of two independent 
processing functions running concurrently on the same 
DSP processor, we exploited the capabilities of the 
DSP/BIOS real-time kernel feature, supported by the 
TMS320C6xxx DSP processors. The DSP/BIOS 
schedules the timing execution of the two software 
modules and treats them as two different threads with the 



same priority level. Both tasks use different control, 
status and data exchange regions in the DPRAM for 
achieving interconnection with the Matlab/Simulink 
simulation environment. 
 

CONCLUSIONS 
In this work, a dynamic development environment for 
prototyping communications systems, consisting of 
Matlab/Simulink tools being interconnected with a 
flexible hardware platform, was presented. The analyzed 
design methodology gives the opportunity to develop 
communications systems in a progressive manner, 
allowing the transformation of a high-level simulation 
model after extensive tests and verification to a fully 
functional, reliable system prototype. This perspective on 
system realization can be extremely useful for the design 
of complicated and resource demanding communications 
systems. The described environment can also be used for 
significant educational purposes on system modeling, 
validation and prototyping. 
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Figure 4. Implementation of the application example 


