
Reprint

From Protocol Models to Their Implementation:
A Versatile Testing Methodology

M. Varsamou, N. Papandreou, and Th. Antonakopoulos

IEEE Design and Test of Computers

 VOL. 21, NO. 5, SEPTEMBER-OCTOBER 2004, pp. 416-428

Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright holders. All
persons copying this information are expected to adhere to the terms and constraints invoked by each
author's copyright. In most cases, these works may not be reposted or mass reproduced without the
explicit permission of the copyright holder.

Communication Protocol Testing

416 0740-7475/04/$20.00 © 2004 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers

DESIGN AND TEST of communication protocols

relies extensively on formal description languages. Along

with the textual description, the International

Telecommunication Union (ITU), the IEEE, and other

organizations provide formal language representations in

protocol specifications.1 The telecommunications indus-

try uses the Specification and Description Language

(SDL)2 as an efficient way to develop a precise protocol

model and validate its functionality under various con-

ditions. These conditions take the form of message

sequence charts (MSCs)3 and enable validation of formal

characteristics, such as deadlock avoidance, to permit

error detection early in the design process.

Although a high-level model constitutes a complete

and accurate representation of the protocol specifica-

tions, its porting in a real embedded system entails addi-

tional constraints. The target hardware imposes several

limitations, not only on the final implementation but also

in the protocol’s testing process, because it’s necessary

to implement an appropriate test bench. Often, creating

a custom protocol implementation along with a custom

test bench will overcome these difficul-

ties. Although this approach seems to

handle the system constraints efficiently,

it also minimizes the design’s flexibility.

Protocol porting to a new system archi-

tecture requires the additional effort of

rewriting part of the protocol’s code and

developing new testing modules.

However, various commercial tools support the com-

pilation of SDL models into lower-level programming

languages, such as C/C++. Using functions and libraries

that reflect the specific hardware architecture permits

further translation of the compiled protocol model into

executable code for a target microprocessor. In partic-

ular, these functions enable integration of the SDL

model with an operating system and a microprocessor-

based hardware platform. Thus, using system-specific

library functions lets us obtain different protocol imple-

mentations for different target devices.

Final code optimization depends on the compiler’s

efficiency and the flexibility of the high-level interface

between the protocol’s model and its environment. In

any case, the final code requires reevaluation. Although

this code was created from an already verified SDL

model, the various low-level system attributes—such as

interrupt handling, task scheduling, and memory or

peripheral access—might result in different or unex-

pected behavior. It can be very hard or impractical to

integrate these attributes into the MSC simulations.

From Protocol Models to
Their Implementation:
A Versatile Testing
Methodology

Editor’s note:
In this protocol design and verification scheme, high-level models serve in
generating simulation sequences for low-level models, and all simulation is
based on directed testing. The methodology is versatile and flexible, but it
might be difficult to set up the first time.

—Carl Pixley, Synopsys

Maria Varsamou
University of Patras

Nikolaos Papandreou
Computer Technology Institute

Theodore Antonakopoulos
University of Patras

Therefore, we need an appropriate test-

ing module that exploits the analytical

protocol testing scenarios developed in

the high-level system model.

In this article, we present such a flexi-

ble and versatile design methodology,

along with a testing environment for the

development of signaling protocols for

point-to-point communication links. This

approach combines multilevel protocol

modeling and validation with a top-down

design and test process that enables sys-

tematic translation of the high-level

abstract model into low-level code. The

development and testing environment

relies on a reconfigurable setup that does

not depend on a specific target proces-

sor. A key feature of our approach is that

the analytical testing scenarios devel-

oped for the high-level model serve to

verify the low-level implementation. We

accomplish this with a custom testing-

sequence translator that uses information

from the MSC simulations to configure

the low-level testing module. This article

also shows how the proposed approach can apply to

the development and testing of the signaling protocol

used in asymmetric digital subscriber line (ADSL) com-

munication links.

Protocol design and test methodology
Figure 1 shows protocol design and validation divid-

ed into three main stages. The first stage, specifications

capture, provides the necessary information for deter-

mining the protocol’s functional and behavioral require-

ments, and for estimating system resources (number

and type of signals, messages, timers, and so on). At the

second stage, we develop a formal model using SDL.

With this model we can use structured and object-ori-

ented methods to define the system’s behavior in terms

of finite state machines (FSMs).4 We also validate the

protocol’s functionality using a testing module that emu-

lates the behavior of the protocol’s environment. To

analyze the protocol’s dynamic behavior and to evalu-

ate error-prone cases, we must determine several test

sequences that represent events generated in the SDL

environment. On the basis of these test sequences, we

execute different simulation scenarios and create the

corresponding MSCs.

At the last stage, we have a verified protocol model

and a set of testing scenarios that provide a complete

test bench conforming to the initial specifications. By

designing and functionally verifying the protocol in a

platform-independent manner, we increase the reusabil-

ity and extensibility of its implementation.

From the high-level modeling stage we move to the

implementation stage. Using commercial tools, we auto-

matically translate the verified protocol model into low-

level executable code (C or C++). The final code is a

stand-alone module that we can adapt to the target plat-

form using platform-specific interfacing functions.

Moreover, we also translate the testing module used at

the SDL-level simulations into an equivalent testing

sequence generator so that we can reuse the SDL-level

test sequences to validate the protocol’s implementa-

tion. To do this, we record the test sequences that initi-

ated the scenarios in the SDL environment, along with

the signals exchanged between the protocol model and

its environment during simulation. A custom applica-

tion then translates these test sequences into the appro-

priate format required by the final system testing

environment, which is based on MatLab tools.

The MatLab environment communicates with the

final system using a custom interface that provides data

exchange and synchronization between the embedded

417September–October 2004

Specification and
Description Language

Testing
sequence generator

Protocol

Implementation

Testing module

Protocol specifications

Testing
scenario
translator

Microcode
development
libraries

Evaluation,
verification,
and debugging

Specification and
Description Language level:
• Modeling
• Validation

Testing unitHardware platform

Figure 1. The three stages of protocol design and test methodology.

processor and the MatLab workspace. As a result,

MatLab scripts interact with the hardware platform and

provide the testing sequences to the embedded proto-

col unit. Moreover, we can collect information on the

protocol’s execution progress as well as on the system

status, and process it in the MatLab environment. This

feature also enables debugging of the protocol’s imple-

mentation to resolve any possible errors and to optimize

the final microcode. We can also modify certain attrib-

utes in the protocol’s model to improve the low-level

microcode’s behavior and generate a more efficient

implementation. The developer’s experience deter-

mines the time this procedure requires.

Protocol testing environment
The testing environment used in our protocol design

and test methodology is based on MatLab tools. Figure 2

presents the debugging and testing setup, which includes

a reprogrammable hardware platform with embedded

processors for protocol execution, and the MatLab envi-

ronment, which runs the scripts executing testing scenar-

ios based on the SDL-level protocol modeling. The MatLab

functions and the hardware circuits use a PCMCIA-based

custom FPGA module to exchange data. This module

extends the available memory space that MatLab can

access via an appropriate I/O device driver, while the

embedded processors access the module as a peripheral

device. This architecture integrates the entire MatLab envi-

ronment as a peripheral device that is transparent to the

total hardware system. As a result, we can map the signals

interfacing the protocol implementation and its environ-

ment into the MatLab workspace, and the protocol’s

engine can interact with user-developed custom scripts.

Control and status signals synchronize the hardware sys-

tem with MatLab. In our test bed, we have measured a

data transfer rate of approximately 2 Mbps between the

MatLab workspace and the FPGA interface module.

In this setup, the hardware platform and the MatLab

environment constitute a complete functional system

that lets us test a protocol’s implementation. The top por-

tion of Figure 2 shows a block diagram of an end-to-end

connection between two protocol units (PUs). At the SDL

level, an interface defined between the protocol model

and its environment determines a complete set of data

and control signals between the PU and the network end

regarding protocol management and maintenance, as

Communication Protocol Testing

418 IEEE Design & Test of Computers

Interface
driver

MatLab

Channel
emulator

Physical-
layer 2
circuits

Physical-
layer 1
circuits

Downlink

Uplink

Protocol testing script Workspace

Peripheral
devices

Hardware platform

PCMCIA
interface
module

Physical-layer
circuits 1
interface
module

Physical-layer
circuits 2
interface
module

Embedded-
system 1

microcontroller

Embedded-
system 2

microcontroller

Protocol
control/

data
interface

Network
end

PU 1
Physical-layer

circuits 1

Network
end

Channel/data link

Testing
sequence
translator

PU 2
Physical-layer

circuits 2

Figure 2. Protocol debugging and testing environment (bottom) and the connection of two protocol units (top).

The dashed lines illustrate the modules needed for a testing environment that includes both protocol units. When

a single protocol unit is used and the protocol testing script includes the rest of the testing environment

functionality, the modules illustrated with dashed lines are not used.

well as signals between the PU and the physical-layer cir-

cuits. These signals implement the handshake proce-

dures over the real channel. We map the SDL protocol

models into the system processors using various interface

functions that reflect the processors’ architecture, while

the MatLab portion of the testing environment emulates

the protocol’s operating environment.

This testing environment supports the evaluation of

either a single transceiver’s PU or a complete configu-

ration comprising both transceivers. In the first case, the

MatLab environment simulates the physical-layer cir-

cuits, the transmission channel, and the far-end trans-

ceiver. In the second case, MatLab includes only the

physical-layer circuits and the transmission channel.

Moreover, we translate the testing scenarios executed

in the SDL environment into MatLab scripts used for

extensive validation of the platform implementation, let-

ting the designer observe how implementation aspects

such as timing and resource allocation affect the pro-

tocol’s functional behavior, which we previously veri-

fied at the SDL level.

Protocol developers can use the methodology

described in Figure 1, along with the testing setup of

Figure 2, to develop and test any signaling protocol. The

following sections describe our methodology for design-

ing and testing the signaling protocol for ADSL modems.5

ADSL signaling protocol case
Recommendation ITU G.992.16 defines the proce-

dures for initializing the ADSL transceiver at the user

end, denoted ATU_R, and at the network operator end,

denoted ATU_C. These procedures include the trans-

mission of specific signals and messages in both direc-

tions that let each side determine certain

communication channel attributes. On the basis of

these attributes, both modems train their signal pro-

cessing circuits (SPCs)—for example, equalizers, tim-

ing recovery, and automatic gain control units—and

also establish certain transmission settings that maxi-

mize the achievable throughput. There are four discrete

initialization phases:

� handshake procedures,

� transceiver training,

� channel analysis, and

� exchange.

Note that the handshake procedures phase (according

to Recommendation ITU G.994.1)7 is the common acti-

vation phase for every DSL technology (not considered

in this article), while the other phases are ADSL specific.

Figure 3 shows the timeline of the ADSL signaling

phases and includes the specific transition states of

419September–October 2004

Handshake procedures Transceiver training ExchangeChannel analysis

Handshake procedures Transceiver training ExchangeChannel analysis

ATU-C

ATU-R

C-QUIET2

Time

C-FLAG2
(G.994.1)

C-GALF2
(G.994.1)

C-PILOT1

C-PILOT1 and
C-QUIET3A

C-REVERB1 C-PILOT2 C-ECT C-REVERB2
C-QUIET5

C-PILOT3

C-REVERB3

R-QUIET2

R-FLAG2
(G.994.1)

R-GALF2
(G.994.1)

R-REVERB1 R-QUIET3 R-ECT R-REVERB2

Figure 3. Asymmetric digital subscriber line signaling phases and detailed transition states of the

transceiver training phase. (R = remote, C = central)

the transceiver training phase. Recommendation

G.992.1 defines the terminology used for state and sig-

nal description. The transition points, indicated by

two vertical arrows, correspond to the first synchro-

nization between ATU_C and ATU_R on the state

sequence of the transceiver training phase. Through-

out the initialization phases, timing recovery and syn-

chronization between the far-end transceivers occur

during certain signal transmission states. An interac-

tive procedure for frame synchronization mainte-

nance—based on message reception, message check,

and message response—is also provided. Upon the

report of a time-out error or a message checksum

error, the initialization process resets to the hand-

shake procedures phase. After the exchange phase,

both modems enter into data transmission mode, usu-

ally referred to as “showtime.” Thereafter, the trans-

mission is based on the settings established and

negotiated during initialization.

Protocol functional requirements
As Figure 3 indicates, the signaling protocol

defines a specific set of transmission (Tx) and recep-

tion (Rx) states at each transceiver, as well as the tran-

sitions from one state to another. Each state is

associated with specific signals and messages sent to

or received from the far-end transceiver. Developers

can implement the protocol on an FSM model that

interacts with the logical circuits and SPCs to initiate

transmission of the output-line signals or to receive

any incoming-line signals. The protocol FSM is inde-

pendent of the implementation details of the

modem’s circuits. The protocol FSM and the modem’s

circuits interact through a custom interface that

enables the protocol state machine (PSM) to take con-

trol of the circuits during the modem’s initialization

procedures. At an abstract level, the protocol’s func-

tionality decomposes into the PSM module, the SPC

modules, and the appropriate interface between these

modules (defined in the form of signals, variables,

and status/control registers).

Protocol model
The Tau SDL Suite by Telelogic is a commercial tool

that supports development and validation of SDL mod-

els using simulation.8 We used this tool to design the

ADSL signaling protocol as a PSM module. We devel-

oped two distinct systems, one for the ATU_C side and

the other for the ATU_R side. To validate the protocol

using simulation, we also developed an intermediate

auxiliary testing module. This module emulates the

response of the far-end modem regarding message

exchange through the transmission channel, and the

response of the SPC circuits regarding signal generation

and signal processing.

We implemented the model’s behavioral description

using communicating state machines represented by

logical processes. Signals and messages between these

processes and the system model’s environment deter-

mine communication. These signals and messages are

based on the interface determined between the PSM

and the SPC modules.

We determined three types of interface signals.

Timing and synchronization signals ensure that the pro-

cedures and state transitions occur precisely as defined

in ITU Recommendation G.992.1. The circuit control sig-

nals correspond to the initialization and control of the

modem’s SPCs, while the ADSL signals and messages

carry the various types of signals and parameters that

the modems exchange.

Figure 4 shows the top-level abstract realization of the

SDL model associated with ATU_C, and it also shows

the channel emulator. We can distinguish example sig-

nals related to user data information (atu_pars), to tim-

ing and synchronization procedures (atu_timer and

s_cnt), to circuit control (agc_on and ec_on), and to

signal exchange (tx_signal and rx_msg).

Two processes implement the transition states

defined at each phase: One handles transmission, and

the other handles reception of the signals sent by the

far-end side. These processes interact using internal sig-

nals for synchronization and error recognition. Figure

5 shows the ATU_C PSM module’s internal structure.

Both processes include error monitoring for time-out

conditions, message checksum errors, and invalid para-

meter reception. In case of error detection, the PSM

modules provide diagnostic messages as they enter the

corresponding error state.

Simulations with a complete set of message

exchange scenarios—both erroneous and error free—

verify the SDL models at both sides. The simulation envi-

ronment is useful for testing not only the SDL model’s

functionality but also its interaction with the environ-

ment and another SDL model during runtime. We exe-

cuted numerous test sequences and studied PSM

module behavior for both sides in detail. In the absence

of the real SPCs, the model-level channel simulator

made the SPCs’ interaction feasible. Figure 6 is an MSC

diagram depicting signal exchange and timing syn-

chronization between ATU_C and ATU_R.

Communication Protocol Testing

420 IEEE Design & Test of Computers

Embedded-microcode development
The SDL protocol models generated executable C

code using the parser and certain translation libraries

supplied by Telelogic, along with a standard C compil-

er from Microsoft. The resulting code reflects the SDL’s

structured features and is not highly optimized, but its

major advantage is that with the development of the

proper interfacing routines, it is integratable into virtu-

ally any platform. Telelogic also provides basic function

libraries that facilitate the integration of an SDL model

either with an operating system or in a hardware plat-

form with a microprocessor and its peripherals. There

are two distinct integration methods: tight integration

interfaces the generated code directly to the runtime

operating system so that the operating system can han-

dle SDL process scheduling, memory management,

timer handling, and so on. Light integration runs the gen-

erated code on a primitive SDL runtime kernel and has

minimal or no interaction with an operating system.

The prototype environment uses the light integration

model, shown in Figure 7. SDL system execution relies

on a primitive scheduler function, which permits each

SDL process in turn to execute one transition. Signals

sent between processes go into the receiving process’

input queue, and custom environment functions han-

dle signals into and out of the SDL system. The basic

environment functions are xInitEnv, xInEnv, and

xOutEnv. Function xInitEnv relates to the system ini-

tialization procedures. Function xInEnv handles signals

sent into the SDL system from the environment, while

421September–October 2004

Transceiver_Training_ATU_C

channel1 symb_cntatu_timer

tx_msg_endatu_timer s_cnt

s_cnt_init,
Stop_scnt

signal_id,
tx_msg

atu_timer_init,
atu_timer_enable,

Stop_atu

to_channel

dethi_reverb_c,
dethi_pilot,
detlo_pilot,

segue1_det,
rx_msg

init_in

init_reverb,
init_pilot

init

atu_pars

to_circuits

from_channel

cp, agc_on, ec_on, eq_on, segue1_det_en,
TargEn, agc_step

dethi_reverb_r, segue1_det,rx_msg

atu_signals

tx_signal

init_out

init_reverb

Channel1

Figure 4. Protocol state machine module of ATU_C, with the channel emulator.

the xOutEnv function handles signals sent by the SDL

system to the environment. The scheduler function calls

xInEnv and xOutEnv iteratively but can serve only one

incoming and one outgoing signal in each iteration. A

queue dedicated exclusively to the SDL system envi-

ronment stores additional signals.

As Figure 2 shows, the protocol’s developer simulates

the PU’s environment in MatLab using custom scripts gen-

erated from the testing processes developed in SDL. The

MatLab workspace is memory mapped as a peripheral

device in the hardware architecture via a custom FPGA

module that enables the implementation to exchange

control and data with its environment. Functions xInEnv

and xOutEnv enable this information exchange.

Figure 8 shows an example from the ATU_C SDL

FSM, which invokes the output of a tx_msg signal car-

rying message parameters; the figure includes the mes-

sage’s translation into low-level C code. The Telelogic

tools and the Microsoft C compiler automatically gen-

erate the C structure definition for the signal, along with

the respective code for the signal’s output and the mem-

ory allocation for its parameters. Function

SDL_OUTP_PAR_ENV adds the signal to the queue ded-

icated to the environment.

The user-defined xOutEnv routine provides the sig-

nal’s actual output. In the case of tx_msg, this routine

accepts the signal’s parameters and maps them in the

peripheral module’s dedicated memory location so that

the testing environment has information about the

FSM’s status. It is therefore obvious that, apart from the

task that represents the SDL module (which has been

extensively tested in the SDL application environment),

Communication Protocol Testing

422 IEEE Design & Test of Computers

s_cnt

R15

ATU_C_Rx

ATU_C_Tx

atu_timer, RX_statecrc_det

R14

Tx_state

R9

R8
init

atu_timer

R12

R10
to_circuits

R11

agc_on, ec_on, eq_on, segue1_det_en,
TargEn, agc_step

init_reverb
R13

dethi_reverb_r, segue1_det, rx_msg

atu_pars

atu_timer

atu_timer

init_out

from_channel

atu_timer_init, atu_timer_enable, Stop_atu

R2

R1
init

symb_cnt

atu_pars

R3

R4

atu_signals

to_circuits

R5

R6

symb_cnt

atu_timer

R7
channel1

s_cnt_init, Stop_scnt

tx_signal

ec_on, cp

atu_timer_init

signal_id, tx_msgtx_msg_end

Figure 5. Top-level structure of the ATU_C protocol state machine module.

the environment functions are also

important because proper communica-

tion between the several modules in the

prototype setup depends on their func-

tionality. Moreover, custom routines con-

sistent with the target microprocessor’s

characteristics handle dynamic memory

allocation or deallocation. As soon as all

code components are available, the tools

provided for the specific processor com-

pile and link them. To produce the

respective stand-alone executable code,

users must create an appropriate make-

file that defines the rules for this process.

System architecture
Our application uses the soft-IP

MicroBlaze core embedded processor.9

We implemented the hardware platform

on a 1-million-gate Virtex-II FPGA device.

The hardware architecture is based on

the CoreConnect bus and includes addi-

tional peripheral devices, along with the

SPC interface module. The final archi-

tecture includes two separate embedded

systems, one for the ATU_C side and the

other for the ATU_R side. Each system

includes a MicroBlaze soft processor

core, an on-chip block of RAM,

CoreConnect bus interconnections, and

on-chip peripheral bus (OPB) based

peripheral devices.10 The SPC interfaces

are physically assigned to a dual-port

RAM (DPRAM) peripheral module. This

module includes the interface logic for

423September–October 2004

env_0 ATU_C_Tx_1_1 channel1_1_3ATU_C_Tx_1_2

wait

wait

Process ProcessProcess

atu_timer

(50)

agc_step

(-10)

atu_timer

(100)

agc_step

(0.0000)

atu_timer

(512)

wait
atu_timer

(512)

s_cnt_init

(-1.0000)tx_signal

(2)
signal_id

(2) wait

dethi_reverb_c

wait

RX_C_REVERB1

RX_C_REVERB1

RX_C_REVERB1

RX_C_REVERB1

Figure 6. Example of message sequence chart state transitions.

R2

[Sig2]
R3

[Sig3]

Specification and Description Language system

R1 [Sig1]

Process 1

R4 [Sig4]

Sig2
Sig3Sig1

Environment in Environment out

Hardware platform

Sig4

Embedded system

Process 2

Process 1 Process 2

Figure 7. Specification and Description Language model translation to low-level microcode using the light-

integration model.

its connection to the two separate OPBs as a standard

peripheral device. Although the DPRAM behaves as a

single memory module at the PCMCIA interface, we

implemented it as two separate memories with distinct

buses, one for each processor. Each processor is

assigned to a different memory space organized into

three distinct functional regions:

� The control memory region contains control infor-

mation and data for configuring the hardware mod-

ules and for initializing communication between the

MicroBlaze processor and the testing applications.

� The SPC memory region contains the data variables

used for the interactions among the PSM and the sys-

tem’s SPCs.

� The user data memory region contains the data vari-

ables that determine certain signaling-protocol para-

meters, defined during system initialization.

The embedded processor accesses the DPRAM dur-

ing protocol execution; the host computer accesses it

for interactions with the protocol FSMs. Adding several

Communication Protocol Testing

424 IEEE Design & Test of Computers

TX_C_SEGUE2

TX_C_RATES_MSG_RA

s_cnt(symbols)

true

SDL C code
automatic
translation

User-defined C
code processing

SDL signal output

tx_msg(message,120,0)

message:=c_rates1//max_dbothm

symbols==11

/****** SIGNAL tx_msg ******/

#define zR_tx_msg 25

typedef struct {

 SIGNAL_VARS

 SDL_Octet_String Param1;

 SDL_Integer Param2;

 SDL_Integer Param3;

} yPDef_zR_tx_msg;

/******* OUTPUT tx_msg ******/

ALLOC_SIGNAL_PAR(tx_msg, zR_tx_msg, yPDef_zR_tx_msg)

yAssF_SDL_Octet_String(((yPDef_zR_tx_msg *)OUTSIGNAL_DATA_PTR)->Param1,

 &(yVarP->z091E_message), XASS_MR_ASS_NF);

yAssF_SDL_Integer(((yPDef_zR_tx_msg *)OUTSIGNAL_DATA_PTR)->Param2,

 SDL_INTEGER_LIT(120), XASS_MR_ASS_NF);

yAssF_SDL_Integer(((yPDef_zR_tx_msg *)OUTSIGNAL_DATA_PTR)->Param3,

 SDL_INTEGER_LIT(0), XASS_MR_ASS_NF);

SDL_OUTP_PAR_ENV(xDefaultPrioSignal, tx_msg, zR_tx_msg, ENV,

 yPDef_zR_tx_msg, "tx_msg");

void xOutEnv (xmk_TmpSignalID, xmk_TmpDataLength, xmk_TmpDataPtr)

{

 switch (xmk_TmpSignalID) {

 case tx_msg : {

 msg_string= &(((yPDP_tx_msg)xmk_TmpDataPtr)->Param1);

 addr_pt = (int *)(RAM_BASEADDR + 0x01D);

 msg_len1 = ((yPDP_tx_msg)xmk_TmpDataPtr)->Param2;

 *addr_pt = msg_len1;

 addr_pt = (int *)(RAM_BASEADDR + 0x01E);

 msg_len2 = ((yPDP_tx_msg)xmk_TmpDataPtr)->Param3;

 *addr_pt = msg_len2;

 msg_pt = (short *)(msg_string->Bits);

 msg=msg_pt;

 addr = (int *)(RAM_BASEADDR + 0x022);

 for (i=0;i<(msg_string->Length);i++){

addr_pt=addr;

msg_pt=msg;

*addr_pt = *msg_pt;

addr++;

msg+=2; } } }

 }

Figure 8. Low-level implementation of a Specification and Description Language signal.

hardware modules from the ADSL data pump lets us

gradually extend the hardware architecture of this

development environment to the general ADSL system.

We can design these modules as standard OPB devices,

so that they communicate directly with the MicroBlaze

processor. Or, they can be stand-alone devices.

Testing the implementation
Testing the protocol’s implementation requires a

channel simulator that interacts with the embedded

PSM modules. So we developed a MatLab-based testing

module that simulates the data path from the PSM mod-

ules’ output to the SPCs and the transmission channel.

We used the SDL-level simulations to generate the test-

ing sequences between the protocol units and the phys-

ical-layer circuits and implemented these sequences in

custom MatLab scripts. These scripts interact with the

SPC interface module in the hardware platform to

appropriately process and respond to the signals gen-

erated by each PSM module.

We modeled the transmission channel in MatLab as

a separate custom module that interacts with the scripts

generated by the SDL level; this provides a complete

functional testing module.

We simulated the channel as a symmetric channel

that modifies the exchanged data with a user-defined

bit-error-rate probability. This lets us test the PSM

response in case of message cycle-redundancy-check

(CRC) errors or other data pattern violations. Moreover,

a suitable configuration of the testing scenarios also

tests time-out conditions and illegal or unaccepted para-

meter negotiations.

We developed an additional graphical application

for visualizing the protocol execution and providing

diagnostic messages. Plain state diagrams with system

information graphically represent the state transitions

and protocol execution, according to the interactions

between the PSM module and the testing environment.

This application is also responsible for acquiring and

displaying system parameters exchanged between the

two protocol units, along with timing information

regarding state transitions. Moreover, it lets users select

among available test scenarios by choosing the chan-

nel conditions to emulate in MatLab. Whenever the PSM

module indicates system failure, the application pro-

duces an appropriate diagnostic message.

Graphics manipulation is a resource-consuming

process, and MatLab scripts must maintain real-time

communication with the hardware platform. Therefore,

because we use the graphical application only for

observation, we did not implement it in the MatLab

environment with a GUI but rather as a stand-alone

application designed using Visual Basic. Figure 9, an

example of the graphical environment, shows the

progress of the protocol’s transceiver training phase for

the ATU_C and the ATU_R transceivers. The areas with

diagonal lines correspond to the already accomplished

protocol stages of each PSM. The complete signaling

procedures execute entirely in the hardware system,

and the channel emulator enables the interactions

425September–October 2004

Figure 9. Graphical environment for testing the protocol’s execution progress.

between the two separate modems. This application

can serve as a template for easily reproducing and

designing graphical applications suitable for testing

other signaling protocols.

A set of variables stored in the DPRAM enables the

transaction of information between the testing applica-

tions and the embedded processors. This set includes

synchronization and control information for the data

exchange process, and protocol data that constitutes the

input and output signals of each protocol phase. Figure

10 depicts data exchange between the MatLab testing

module, the graphical application, and the PSM mod-

ules. A control field synchronizes the PSM modules’ exe-

cution timing reference with the execution delay of the

emulator-based operations. We use this control field to

identify any protocol state transition, read new state out-

put data from memory, process data according to the

current state, and write new state input data to memory.

Experimental results
Using the approach described, we exhaustively tested

the implemented FSMs of the ADSL signaling protocol

and collected statistics on various error conditions. Test

cases resulting in error detection include CRC errors,

time-out occurrences, and parameter failures. In these

test cases, we deliberately inserted noise and errors in the

exchanged signals and messages, using either a dialog

menu in the graphical application or an automatic test

generator during system testing. We measured response

times during each test case so that we could collect sta-

tistical data on the actual time needed for each state tran-

sition, and we measured each scenario’s total execution

time. To verify the efficiency of the protocol’s imple-

mentation, we compared these results with the time spec-

ifications of ITU Recommendation G.992.1. Table 1

summarizes the error and time statistics collected at both

transceivers, along with the parameters used during test-

ing. Total execution time includes all possible scenarios,

both successful and erroneous. (We omitted the hand-

shake phase because it’s not ADSL specific.)

During final system testing, the application software

requires additional time to retrieve the collected data,

reinitialize the state machines, and start the next testing

scenario. This reconfiguration procedure takes a few

seconds (depending on the host processor’s speed), so

the total time required for exhaustive system testing is

16 to 20 minutes for 140 test cases. After certifying that

the implemented protocol is in total accordance with

the timing specifications of Recommendation ITU

G.992.1, users can execute additional tests by adding

noise in the channel and collecting statistics about erro-

neous or successful executions.

Communication Protocol Testing

426 IEEE Design & Test of Computers

Synch control

Current state input
signals

MatLab
testing

environment

DPRAM

PCMCIA
driver

Current state output
signals

PU 1 memory space General-
purpose I/O
peripheral

MicroBlaze
processorOPB

Protocol unit 1 state machine module

Protocol unit 2 state machine module

OPB
device

interface
logic

General-
purpose I/O
peripheral

MicroBlaze
processor

OPB

OPB
device

interface
logic

Protocol
progress
control

application
(graphical

application)

Synch control

Current state input
signals

Current state output
signals

PU 2 memory space

Figure 10. System architecture and data exchange between the applications environment and the protocol

modules.

VALIDATING AND TESTING communication protocol

implementations is not trivial. Developing the testing envi-

ronment itself required a lot of effort, but it is easily

reusable for developing other protocols and for exten-

sively testing their implementations. Overall, this means

decreased design and test time compared with direct

implementation of the protocols on a hardware platform.

As a future extension of our protocol testing method-

ology, we are looking at ways to substitute other high-

level tools for modeling and implementing the protocol

state machines in place of the SDL environment. It

would be beneficial to have a unified environment that

allows multilevel system development and testing, an

environment based on a complete system model that

includes protocol execution units and physical-layer cir-

cuits. We previously described an initial approach for

developing and testing physical-layer circuits.11 �

Acknowledgments
This work was partially supported by the University

of Patras’ Karatheodoris R&D program and the Greek

Ministry of Industry’s Project 00BE33, “Digital

Subscriber Lines Technology.”

References
1. IEEE P802.11, Draft Standard for Wireless LAN Medium

Access Control and Physical Layer Specification, IEEE,

1997.

2. Recommendation ITU-T Z.100, Specification and Descrip-

tion Language, Int’l Telecommunication Union, 1999.

3. Recommendation ITU-T Z.120, Message Sequence

Chart, Int’l Telecommunication Union, 1999.

4. S.A. Edwards, Languages for Digital Embedded

Systems, Kluwer Academic Publishers, 2000.

5. T. Starr, J.M. Cioffi, and P.J. Silverman, Understanding

Digital Subscriber Line Technology, Prentice Hall, 1999.

6. Recommendation ITU G.992.1, Asymmetrical Digital

Subscriber Line Transceivers, Int’l Telecommunication

Union, 1999.

7. Recommendation ITU G.994.1, Handshake Procedures

for Digital Subscriber Line Transceivers, Int’l Telecom-

munication Union, 1999.

8. Telelogic Tau SDL Suite User’s Manual, Telelogic AB,

2001.

9. MicroBlaze Hardware Reference Guide, Xilinx Inc., 2002.

10. On-Chip Peripheral Bus: Architecture Specifications,

Version 2.1, IBM, 2001.

11. M. Varsamou et al., “From Matlab/Simulink Models to

Prototype Implementation: A Communication Systems

Development Environment,” Proc. Nordic MatLab Conf.,

ComSol (http://www.comsol.dk), 2003, pp. 160-163.

Maria Varsamou is a graduate stu-
dent in the Department of Electrical
Engineering and Computer Technolo-
gy at the University of Patras, Greece.
She participates in various R&D pro-

jects with European industries. Her research interests
include digital communications with an emphasis on
error control coding. Varsamou earned a BS in electri-
cal engineering from the University of Patras. She is a
member of the Technical Chamber of Greece.

427September–October 2004

Table 1. Asymmetric digital subscriber line signaling: parameters and testing results, by initialization phase.

Parameters Transceiver training Channel analysis Exchange

No. of states, ATU_C 11 6 16

No. of states, ATU_R 5 9 17

No. of CRC errors, ATU_C 0 2 5

No. of CRC errors, ATU_R 0 2 5

No. of time-outs, ATU_C 4 0 3

No. of time-outs, ATU_R 2 1 3

No. of parameter failures, ATU_C 0 24 3

No. of parameter failures, ATU_R 0 40 46

 Time statistics (seconds)

Min. Max. Min. Max. Min. Max.

ATU_C successful execution 1.81 3.16 4.30 4.30 0.42 3.51

ATU_R successful execution 1.81 3.64 4.45 5.17 0.27 3.10

ATU_C total execution 4.45 7.14 14.00 32.62 5.15 18.21

ATU_R total execution 5.48 9.14 16.00 66.70 14.64 91.20

Nikolaos Papandreou is a gradu-
ate student in the Department of Elec-
trical Engineering and Computer
Technology at the University of Patras,
Greece, and a research engineer with

the Communications and Embedded Systems Group
of the Computer Technology Institute in Greece. His
research interests include digital communications with
an emphasis on performance analysis and rapid pro-
totyping. Papandreou earned a BS in electrical engi-
neering from the University of Patras. He is a member
of the IEEE and the Technical Chamber of Greece.

Theodore Antonakopoulos is an
associate professor in the Department
of Electrical Engineering and Comput-
er Technology, University of Patras. He
participates in several R&D projects

with European industries. His research interests
include digital communications with an emphasis on
performance analysis, efficient hardware implementa-
tion, and rapid prototyping. Antonakopoulos has a
PhD from the University of Patras. He is a senior mem-
ber of the IEEE and a member of the Technical Cham-
ber of Greece.

Direct questions and comments about this article
to Theodore A. Antonakopoulos, University of Patras,
Department of Electrical Engineering and Computer
Technology, 26500 Rio, Patras, Greece.

For further information on this or any other computing

topic, visit our Digital Library at http://www.computer.

org/publications/dlib.

Communication Protocol Testing

428 IEEE Design & Test of Computers

SET
INDUSTRY

STANDARDS

computer.org/standards/

HELP SHAPE FUTURE TECHNOLOGIES • JOIN A COMPUTER SOCIETY STANDARDS WORKING GROUP AT

Computer Society members work together to define standards like
IEEE 1003, 1394, 802, 1284, and many more.

wireless networks

FireWire
token rings

gigabit Ethernet

802.11
enhanced parallel ports

