
A Versatile Emulator for the Aging Effect of
Non-Volatile Memories: The case of NAND Flash

Antonios Prodromakis, Stelios Korkotsides and Theodore Antonakopoulos
Department of Electrical and Computer Engineering

University of Patras
Patras, 26504, Greece

e-mails: aprodromakis@upatras.gr, stelkork@ece.upatras.gr and antonako@upatras.gr

Abstract—This work presents a versatile and flexible FPGA-
based platform, designed for accurate emulation of the aging
effect of non-volatile memories. The emulator is based on a
reconfigurable hardware-software architecture which enables the
accurate representation of various non-volatile memory technolo-
gies, like NAND Flash and PCM. The proposed architecture
can be used for emulating memories at the cell, chip and
system level, while the proposed hardware platform can be
used as a valuable tool for the development and evaluation of
memory-related algorithms and techniques. In this paper, we
analyze the architecture of the non-volatile memory emulator,
focusing mainly on the NAND Flash case, we present details
about its internal functionality and, using experimental results,
we demonstrate the high accuracy achieved when it is used to
emulate a specific NAND Flash chip.

Index Terms—Non-volatile memories, NAND Flash, Phase
Change Memory, Memory Aging, FPGA emulator.

I. INTRODUCTION

Over the last few years, non-volatile memory (NVM) has
shown a great potential in replacing volatile memory, like
dynamic random access memory (DRAM), and magnetic
hard disk drives (HDDs) in caching and storage applications.
NAND Flash-based solid state drives (SSDs) have already
emerged as a low-cost, high-performance and reliable storage
medium for both commercial and enterprise storage systems.
Additionally, the properties of phase-change materials and the
recent scaling of Phase-Change Memory (PCM) has made it a
perfect candidate for developing phase-change random access
memories (PCRAMs).

The rapid scaling of NVMs, with process nodes below
19nm, and the use of multi-level cell (MLC) technologies has
increased their storage density and reduced the storage cost
per bit dramatically. However, their lifetime capacity has not
remained unaffected. Different noise sources and interferences
along with aging effects have now a great impact on the
reliability and endurance of these memory technologies, and
hence, on the storage systems where these memories are used
(SSDs, PCRAMs). Numerous methods and techniques, such
as wear-leveling, specialized error correcting codes (ECC)
and precoding techniques have been employed to compensate
these effects [1], [2], [3], [4], while others, more complex but
also more efficient, like dynamic adaptation of read reference
thresholds, are at an experimental level [5].

The development of these techniques are based on experi-
mental characterization of NVM cells and chips. Character-
ization is related with measuring bit error ratio (BER) and
response time (read and write time) during the whole lifetime
of a device, for various loading data patterns and timing sce-
narios. This process is performed using real NVM ICs, usually
the engineering, pre-production parts, while more thorough
testing at the system level is performed when production parts
are available. This approach has two major drawbacks. On one
hand it is a very time-consuming process, since the aging of
an NVM may require a large number of program/erase (P/E)
cycles to be performed for each experiment, ranging from
tens of thousands (NAND Flash) to millions (PCM) program
cycles. On the other hand, the aging characteristics of an NVM
are proportionally dependent on the number of the performed
P/E cycles, thus making it impossible to conduct different or
successive experiments at the same aging state of a memory
chip.

In [6] we presented a model that accurately represents the
aging process of a MLC NAND Flash cell, while in [7] the
analysis of a MLC NAND Flash memory as a time-variant
communications channel, based on the asymmetric 4-PAM
model, was presented. In this paper, we expand our work and
present the architecture of a flexible FPGA-based platform,
designed for accurate emulations of NVM technologies, fo-
cusing mainly on MLC NAND Flash technologies. Accuracy
is measured in reference to experimentally specified bit error
probabilities for various aging conditions (ie. the number of
P/E cycles applied to a NAND Flash chip), usually for random
data patterns.

The hardware platform presented in this work is based on a
reconfigurable hardware-software architecture which enables
the accurate emulation of new and emerging technologies and
models of NVMs. The developed platform can be a valuable
tool for the evaluation of memory-related algorithms, signal
processing and coding techniques.

The remainder of this paper is organized as follows. Section
II analyzes the most common architectures and I/O interfaces
of NAND Flash and PCM. Section III analyzes the level
distributions of these two NVM technologies and how they
are affected by the aging conditions. In Section IV we discuss
the main architectural components of the presented NVM
emulator, while in Section V we present two cases of using

Substrate (p-well)

Tunnel Oxide

Floating Gate

Interpoly Oxide

Control Gate

Drain(n+)Source(n+) Drain(n+)

(a)

C
el

lC
ur

re
nt

Gate to source voltage

Erased Programmed

(b)

DSL
WL0

WL1

WL2

WLm

WLm-1

WLm-2

SSL
Source

BL0 BL1 BLn-1 BLnString

word-line

(c)

Non-Volatile Memory Cell Array

Block

COM ADDR

word-line

Peripheral Circuits

I/O Interface

bi
t-l

in
e

Page Buffers

Program & Read Circuits

DATA
St

rin
g

(d)

Fig. 1: (a) Floating Gate transistor, (b) I-V Characteristic, (c)
NAND Flash block, (d) Simplified chip architecture

the proposed system. Finally, in Section VI we present expe-
rimental results of a NAND Flash chip and demonstrate how
the designed emulator accurately emulates its BER behavior.

II. NAND FLASH AND PCM TECHNOLOGIES

NAND Flash memories are based on Flash cells which are
implemented using floating gate transistors (FGTs), that is,
field effect transistors (FETs) with an additional floating gate
between the substrate and the control gate, as depicted in Fig.
1a. The effective threshold voltage of FGT, and thus its I-V
characteristic, depends on the charge stored in its floating gate
(Fig. 1b) [8]. NAND Flash acquires non-volatile properties as
the floating gate is surrounded by dielectrics which ensure the
reliable isolation of the trapped charge for long periods of
time [9]. Fig. 1c illustrates the interconnection of FGTs in a
NAND Flash block. Groups of FGTs sharing the same bit-line
are connected in series, forming strings, while logical pages
are formed by cells sharing the same word-line. All strings
of cells sharing the same group of word-lines form a NAND
Flash block.

Programming of NAND Flash cells is achieved by apply-
ing bias voltages to the control gate and the drain of the
FGTs, which causes the Fowler-Nordheim (FN) tunnelling
phenomenon and traps the charge into the floating gate. This
operation is only allowed if the cell was previously in the
erased state (no charge stored in the floating gate). Information
stored in the cells is read by applying a small voltage at the
drain of the FGT and sensing the current that flows through it.
Program and read commands are performed on a page basis,
while erase is performed on a block basis.

Fig. 1d illustrates a simplified block diagram of a NAND
Flash chip, which consists of a 2D memory cell array, page
buffers, program and read circuits and the I/O interface. The
interface between a NAND Flash chip and its controller
consists of three sets of I/O signals. The COM set determines

Electrode
Chalcogenide

Th
er

m
al

el

em
en

t

Electrode

(a)
(b)

WL0

WL1

WLm

WLm-1

BL0 BL1 BLn

(c)

Fig. 2: (a) Phase Change Element, (b) Programming Pulses,
(c) PCM circuit schematic

which command shall be executed, (i.e. program, erase, read),
the ADD I/O set specifies the row and/or column address that
the command refers to, while the DATA I/O set contains the
data to be read or those to be programmed. The most common
I/O interfaces of NAND Flash chips are the Toggle [10] and
the ONFI [11], with data rates up to 400 MBps.

PCM memories, also known as storage class memories, are
based on PCM cells which consist of an active phase-change
element (PCE), which lies between two electrodes and a heat-
ing element, as shown in Fig.2a. In order to store information,
PCM cells take advantage of the ability of reversible, thermally
induced phase transformation of chalcogenide alloys, such as
Ge2Sb2Te5. This phase transformation can set the structure
of chalcogenide alloy in multiple states, which have different
electrical resistance. The poly-crystalline state results in a high
resistance, while in the amorphous state the chalcogenide alloy
has low resistance. The transition between these states can be
defined by a RESET and SET operation respectively.

The RESET operation is performed by slowly heating the
memory element above its melting point and then rapidly
cooling it down in order to maintain its amorphous molecule
structure. On the other hand, in the SET operation, the cell
is heated above its glass temperature for a longer period of
time, and thus the material is crystallized. The temperature
variations during programming are shown in Fig.2b. Using
advanced writing techniques, setting the cell’s resistance in
states between SET and RESET has become feasible and
multi-level cell programming in PCM is a reality nowadays
[5].

In SLC memories, the programming of a cell is performed
with the use of SET and RESET operations. In MLC mem-
ories, a more complicated scheme is used in order to place
the chalcogenide alloy in discrete intermediate states. Reading
is performed by precharging a bit-line and measuring its
discharge time, which is directly connected to the resistance

of the selected cells. Fig.2c illustrates the interconnection
of PCEs in a 2-D array. The selection of a PCM cell in
the memory array is performed by a FET. In contrast to
NAND Flash, PCM access can be performed at byte level,
although small blocks of data are usually used. Since PCM was
initially developed for DRAM replacement, PCM chips use
DRAM interfaces, like DDR3, but PCM can also be integrated
in chips that use ONFI/Toggle-like interfaces, when storage
applications are targeted [12].

Both NV memory technologies described in this section
are affected by the number of programm cycles that have
been applied since the first use of these devices. In NAND
Flash, programming can be performed only once after an
erase cycle, while in PCM phase alternation determines a
write cycle. Therefore, aging is determined differently in
these technologies. Generally speaking, for NAND Flash
aging is related with the number of program/erase cycles
applied, while for PCM, aging is determined by the number of
set/reset cycles applied. Although the following sections are
mainly related with the emulation of NAND Flash memories,
the main ideas implemented in the presented emulator can
also be applied to PCM with the appropriate modifications to
the noise model.

III. THE IMPACT OF AGING ON THE RELIABILITY OF
NAND FLASH

A. Modeling Level Distributions

Storing data to an MLC NVM is achieved by accurately
programming its memory cells into intermediate voltage (Flash
based) or resistance (PCM) levels. More specifically, for an n-
bit/cell NVM, each cell can be programmed into 2n different
levels. Each level corresponds to a symbol, represented as
an n-bit binary vector, which can be mapped using different
schemes (i.e. Gray mapping, direct mapping) [1]. As the num-
ber of states increases, the margin separating them diminishes,
thus MLC NVMs are more vulnerable to noise sources than the
SLCs. The voltage/level distributions are affected by different
noise sources, such as cell-wearing in NAND Flash memories
or resistance drifting in PCM, while cell to cell interference
(CCI) plays a major role when process nodes below 30nm
are used [13]. It has been shown in [14] and [15] that each
NAND Flash cell can be modeled as a level-dependent additive
white noise channel (AWGN) with high accuracy. Although
the relative characterization of PCMs is an on-going process,
the same assumption can also be made for PCMs [16], [12].

The noise characteristics depend on the aging state of the
cell and the input symbol s, the noise is data-dependent. Let Ls

denote the ideal level of the input symbol s, then the read-out
signal S will be a random variable with the likelihood function
(1), where μs and σs are the mean and standard deviation of
level-dependent Gaussian noise:

p(S) =
1

√
2σ2

sπ
e−(S−(μs+Ls))

2/2σ2
s (1)

−0.2 0 0.2 0.4 0.6 0.8 1

S1 S2 S3 S4

κ1σ σ σ κ2σ

VA VB VC

Normalized Levels

P
ro
b
a
b
il
it
y
D
en

si
ty

F
u
n
ct
io
n

Fig. 3: Level distributions of a 2-bits/cell NAND Flash

Cycling a memory cell alters the parameters μ and σ of the
Gaussian probability density function. The mean noise levels
are usually shifted to higher values and level distributions
become wider. Consequently, level distributions of different
symbols may increase their overlap and an erroneous read
of the stored information is more likely to happen, therefore
leading to higher raw bit error ratio (RBER).

In this paper, we use the results of [17] to determine the
normalized error-free level L of each symbol. Furthermore,
we assume that if σ denotes the AWGN standard deviation of
an intermediate level then the outer levels (erased and fully
programmed states) will have a standard deviation of k1σ and
k2σ, respectively. Fig. 3 presents the level distributions for
each model. This approach can cover all different NAND Flash
technologies presented in the existing literature. For example,
based on [18], k1 = 2 and k2 = 1, while based on [19],
k1 = 1.5 and k2 = 1.2. Additionally, k1 = 4 and k2 = 2
as in [1] and [2]. Table I illustrates the normalized means
and standard deviations for each state, as well as two coding
schemes used to map the binary vectors into symbols in 2-
bits/cell NAND Flash.

TABLE I: Normalized mean and standard deviation of level
distributions of a 2-bits/cell NAND Flash

State S1 S2 S3 S4

Direct Mapping 11 10 01 00

Gray Mapping 11 01 00 10

Normalized Mean 0.0 0.40625 0.56875 0.8125

Standard Deviation k1σ σ σ k2σ

IV. EMULATING NVMS AS A TIME-VARIANT
COMMUNICATIONS CHANNEL

Emulating NVM for achieving accurate bit error charac-
teristics for a given technology requires that the relationship

0 20 40 60 80 100 120
0.01

0.015

0.02

0.025

0.03

0.035

0.04

P/E Cycles [K]

σ

κ1=4 κ2=2

κ1=4 κ2=1

κ1=1 κ2=1

Fig. 4: Standard deviation as a function of P/E cycles for
different models of NAND Flash.

between P/E cycling and the noise characteristics to be de-
termined. By treating the memory device as an asymmetric
n-PAM communication channel with time-variant (aging) char-
acteristics (the case of 4-PAM has been analyzed in [7]), one
can express the relation of RBER with μ and σ of the Gaussian
probability density function in a closed form. Furthermore,
this analysis can be extended for non-equiprobable data and
for different noise models determined by k1 and k2.

Although the value of σ is a statistical metric which is
not directly measurable in a memory device, the qualitative
similarity between RBER as a function of σ and RBER as a
function of P/E cycles indicates that there is a relationship
between σ and the number of P/E cycles. In [14], it is
stated, with a justification based on measurements, that this
relationship is linear for the nominal lifetime of a memory
device. We have verified this by studying measurements from
several MLC memories and different statistical characteristics
of the Gaussian distributions. Moreover, as shown in Fig. 4,
the linear relationship is preserved in all three different MLC
NAND Flash models.

The importance of this observation lies on the fact that the
bit error emulation of an NVM can be accomplished with
high precision by observing its aging behavior, without any
knowledge of its internal architecture or the electrical specifi-
cations of its cells. However, if we are interested in emulating
the internal electrical characteristics of memory cells (e.g. the
threshold voltages in a NAND flash memory cell), then the
mean values of the distributions must be provided, since they
cannot be acquired by mere observation.

V. THE NVM EMULATOR

The aim of the proposed design is to develop a high per-
formance emulation platform, able to interface with existing
NVM controllers and emulate the bit error characteristics of
different NVM technologies with high accuracy. Emulations
can be performed at any user-specified state of the aging
process, thus eliminating the need of cycling on a real memory
device. Furthermore, it provides the capability to conduct
different experiments at the same aging conditions, which is

LFSR Single ln(·) −2(·)
√

(·)

LFSR cos(·) Single

σs

μs S

Ls

Cell Logic

X

Box-Muller Method

Fig. 5: Block diagram of the Cell Core architecture.

not possible when real chips are used. The proposed NVM
emulator is capable of conducting experiments at the cell, page
or even chip level.

A. Memory Cell Emulation

As analyzed in section III, a NVM cell can be modeled as
a level dependent AWGN channel. The implementation of a
Gaussian noise generator is based on the Box-Muller method
[20]. According to this method, if a and ϕ are independent
random variables from the same uniform density function on
the intervals (0, 1) and (0, 2π) respectively, and

X =
√
−2 · ln (a) · cos (ϕ) (2)

then X will be a variable from the normal distribution with
unit variance, and zero mean (X ∼ N (0, 1)). Finally, if

S = (X · σs) + (μs + Ls), (3)

then S ∼ N (μs + Ls, σ
2
s). The implementation of each of

the Cell Cores, shown in Fig. 5, is based on the architecture
described in [6]. Each Cell Core has three inputs, the mean
(μs) and standard deviation (σs) of the noise, as well as the
ideal level (Ls) of the input symbol. The result of the cell
emulation is a single precision read-back signal S.

Apart from the Cell Cores, we implemented two additional
modules, the Aging Logic and the Hard-decision Logic. The
former maps the user-specified aging condition (P/E cycles)
to the equivalent noise characteristics (μs, σs) based on the
provided distribution model and the analysis of section IV. The
latter implements the decoding of the read-back signals to n-
bit symbols. The hard-decision is taken based on the provided
read reference thresholds or by applying a dynamic adaptation
of a read reference thresholds algorithm.

B. Page and Chip Emulation

There are several architectures which determine how pages
are formed within word-lines. For example in the odd/even
bit-line architecture of a NAND Flash, odd pages are formed
by cells belonging to the odd bit-lines, while even pages
are formed by cells belonging to the even ones, respectively.
However, in the all bit-line (ABL) architecture there is no such

NVM Chip Architecture

N
V

M
 D

ig
ita

l I
/O

 In
te

rf
ac

e

D
ig

ita
l I

/O
 &

 C
on

tro
l L

og
ic

I/O DATA Buffer

Write
FSM

Read
FSM

A
dd

re
ss

D

ec
od

er

Write Circuits Read Circuits

NVM Memory Cell Array y y

(a)

NVM Emulation Logic

DRAM
M

U
X

A
gi

ng
 L

og
ic

Cell

NVM Emulation Core

N
V

M
 D

ig
ita

l I
/O

, P
er

ip
he

ra
l I

nt
er

fa
ce

D
ig

ita
l I

/O
 &

 C
on

tro
l L

og
ic

I/O DATA Buffer

Write
FSM

Read
FSM

Soft-Read Signal Buffer

Cell
Cell
Cell A

dd
re

ss

D
ec

od
er

Write Circuits Hard Decision Logic

(b)

Fig. 6: (a) NVM chip architecture, (b) NVM emulator’s
architecture.

separation [10]. Without loss of generality, in this work we
assume that each word-line of cells contains only one logical
page.

Fig. 6a demonstrates the internal architecture of an NVM
chip, while Fig. 6b highlights the architecture of the presented
NVM emulator. The emulator’s block diagram has been con-
figured at a module-level abstraction in order to demonstrate
its structural similarity with a real NAND Flash chip. The
main parts of the NVM emulator consist of the Digital I/O &
Control Logic, the Read and Write FSMs, the bi-directional
Page Buffer, as well as the modules to emulate the cell array
and the Hard-Decision circuits.

In a real NVM device, the Digital I/O & Control Logic
decodes the commands sent by the controller through the
NVM Interface and activates the respective FSMs. When a
page program command is executed, data are stored in the
internal page buffer (I/O DATA Buffer) and then they are
stored to the equivalent cells of the cell array using the write
circuits. Respectively, when a page read command is executed,
data are read from the cell array with the use of the read
circuits and are stored to the page buffer, by exploiting the
hard-decision circuits. The Address Decoder translates the
column and row address of the command to be executed and
activates the write and read circuits to perform operations on
the specified cells. When a block erase command is executed,
a set of pages is programmed to erase states.

The operations of the NVM emulator are based on the

NVM Emulation Core

NVM Digital I/O Logic

FPGA

Embedded
processor

TCP/IP

ETHERNET
MAC/PHY

Host

TCP/IP

ETHERNET
MAC/PHY

Host Interface

AXI4
AXI4-Lite

(a)

FPGA2

NVM Emulation Core

NVM Digital I/O Logic

Embedded
processor

TCP/IP

ETHERNET
MAC/PHY

Host

TCP/IP

ETHERNET
MAC/PHY

NVM
Controller

FPGA1

NVM Interface
(i.e. ONFI, Toggle 2.0, DDR3, HSS)

Host Interface

(b)

Fig. 7: Implementation of the NVM Emulator (a) as an AXI
Peripheral, (b) as an NVM device

functionality of real memory devices. In the case of a page
program command, data are stored to the internal I/O DATA
Buffer, from which they are written to the respective address
of a dynamic random access memory (DRAM). When a page
read command is executed, data are read from the DRAM and
are supplied to the Emulation Logic module, which consists of
up to eight parallel Cell Cores. The read-out of 16-bits signals
are then stored to the Soft-Read Signal Buffer, in parallel are
hard-decoded by the Hard-Decision module and stored back
to the I/O DATA Buffer as n-bit symbols.

C. The Emulator’s Architecture

The NVM Emulation Core presented in the previous subsec-
tion can be used in various system configurations, depending
on the specific application. Fig. 7a presents a version of the
NVM Emulator in which the NVM Digital I/O Logic has been
designed to interface with a microprocessor, such as an AMBA
AXI4 peripheral for embedded systems. The advantages of this
architecture are two-fold. First, it provides the ability of testing
and debugging the NVM emulator without the use of a specific
NVM controller. Secondly, emulation of the bit error char-
acteristics of a NVM is performed independently to the I/O
interface. In this version we have used an FPGA board which
contains the NVM Emulator, an embedded microprocessor and
an Ethernet connection to interface with a host machine. The
host machine contains a user-friendly environment, with the
use of which we can conduct experiments by employing a set
of high-level commands. The communication between the host
machine and the embedded microprocessor has been designed
using the TCP/IP protocol stack and a custom data transfer
protocol [16]. The microprocessor processes the commands
sent by the host machine and initiates the respective operations
at the NVM Emulator.

Fig. 7b presents a second architecture that uses the NVM
Emulator on another system-abstraction level. The advantage

of this approach is that it gives the ability to replace a real
NAND Flash chip with the NVM Emulator and to conduct
experiments by exploiting an existing NVM controller. Hence,
the development of various signal processing algorithms and
techniques can be applied directly to the data acquired by
the NVM Emulator in the same way as if a real chip was
used. Using this approach, two FPGA boards are necessary
to implement the overall system. One FPGA board contains
the NVM controller and the embedded microprocessor, while
the second FPGA board contains the NVM Emulation Core.
In this case, the microprocessor processes the commands sent
by the host machine and initiates the operations at the NVM
Emulator by using the NVM Controller. The NVM Controller
is designed as an AMBA AXI4 peripheral and implements
the data acquisition and the logic to interface with the NVM
Emulation Core. Data symbols and commands, such as page
read and page program, are exchanged between the controller
and the emulator via this module. Additional commands to
determine the aging conditions and other properties of the
system must also be provided as additional commands by the
controller. The NVM Controller Interface can be implemented
using typical NVM interfaces such as ONFI and Toggle.

The above described NVM Emulator can be used to emulate
not only single chip NVM chips, but also more complex
configurations. For example, multiple NVM chips can also
be emulated using multiple instantiations of the presented
NVM Emulator, forming a single NVM channel with multiple
NVM chips sharing the same data lines and operating on
a pipeline fashion. Depending on the available glue logic,
multiple instantiation of the aforementioned NVM channel can
also be used to emulate the whole storage area of a Solid-State
Device with multiple NVM channels.

VI. EXPERIMENTAL RESULTS

This section presents the experimental results of the NVM
Emulator, when implemented as an AMBA AXI4 peripheral.
The design has been developed using the Xilinx Vivado
2013.4 suite and implemented on a Zynq-7000 zc706 Xilinx
evaluation board. Experimental loading scenarios and analysis
have been performed using the MATLAB environment at the
host side.

We used a 2-bits/cell commercial MLC NAND Flash as the
emulation target. The internal characteristics of the memory,
such as voltage threshold distributions and their variation as
a function of its aging state were unknown. We assumed that
the effect of the mean voltage drift was negligible compared
to the effect of the standard deviation and therefore during the
emulation process we kept the mean noise value equal to zero.
This fact was compensated by adjusting the noise’s standard
deviations as the number of P/E cycles was increased. For
the voltage threshold distribution model we used the values
k1 = 4 and k2 = 2. Fig. 8 illustrates the relationship between
BER as a function of noise’s standard deviation according to
the asymmetric 4-PAM model of [7].

The next step was to determine the relationship between
BER and P/E cycles of the real NAND Flash memory. This

0.02 0.025 0.03 0.035

10−4

10−3

10−2

Normalized Standard Deviation
B
it
E
rr
o
r
R
a
ti
o

Fig. 8: BER as a function of standard deviation.

20 30 40 50 60 70 80 90 100

10−4

10−3

10−2

P/E Cycles [k]

B
it
E
rr
o
r
R
a
ti
o

NAND Flash Results
NAND Flash Fitting
NVM Emulator Results

Fig. 9: BER as a function of P/E cycles, using a NAND Flash
device and the NVM Emulator.

process was performed by erasing, programming with random
data and reading the pages of various memory blocks, while
the raw BER was computed at each P/E Cycle. Due to the fact
that the outcome curve had significant fluctuations, the BER
curve was approximated by a fitting curve. In Fig. 9 we present

the measurements of BER as a function of P/E cycles of the
NAND Flash chip. The experimental BER results are indicated
with gray-blue, while the solid dark-blue curve represents the
fitting curve.

Using the two curves of Figs. 8 and 9, we determined
the relation between standard deviation and P/E cycles for
the whole lifetime of the device. For a given BER value in
Fig. 8 we determine the standard deviation and for the same
BER value in Fig. 9 we find out the respective P/E cycles
value. Therefore, the Aging Logic of the NVM Emulator
was configured with the outcome parameters of the above
mentioned process. Then for various aging conditions we
collected measurements using the NVM Emulator using the
same procedure as the real NAND Flash device. A set of
commands was applied (block erase, programming all pages of
the block with random data and reading them back) and BER
statistics were collected. The emulator’s BER measurements
are also indicated in Fig. 9, where they are marked as red
dots. Comparing the experimental results of the real NAND
Flash device with the results generated by the proposed
NVM Emulator, when it is configured with the appropriate
parameters, it becomes obvious that the presented emulator
can represent accurately the behavior of a real NVM device,
a MLC NAND Flash chip in our case.

VII. CONCLUSIONS

In this paper, we presented the architecture and functionality
of a real-time emulator for non-volatile memories. The emu-
lator can accurately represent the bit error characteristics of a
real memory device during its whole lifetime, by associating
the device’s aging conditions with emulator’s internal param-
eters. Experimental results from real NAND Flash memories
have been used to validate the emulator’s performance.

The presented NVM Emulator provides a valuable tool for
the development and evaluation of memory-related algorithms,
interface circuits and even whole storage systems, since it
offers real-time and high precision emulation under user-
defined aging conditions and adjustability to the characteristics
of the emulated NVM technology. The emulator supports
single-level and multi-level cells and can be used for repetitive
experiments under the same aging conditions, a procedure that
cannot be performed for a large number of experiments on
a real memory device due to the programming-related aging
process.

REFERENCES

[1] B. Chen, X. Zhang, and Z. Wang, “Error correction for multi-level nand
flash memory using reed-solomon codes,” in Signal Processing Systems,
2008. SiPS 2008. IEEE Workshop on, 2008, pp. 94–99.

[2] F. Sun, K. Rose, and T. Zhang, “On the use of strong bch codes for
improving multilevel nand flash memory storage capacity,” in IEEE
Workshop on Signal Processing Systems (SiPS): Design and Implemen-
tation, 2006.

[3] Z. Wang, M. Karpovsky, and A. Joshi, “Reliable mlc nand flash
memories based on nonlinear t-error-correcting codes,” in Dependable
Systems and Networks (DSN), 2010 IEEE/IFIP International Conference
on, 2010, pp. 41–50.

[4] W. Xu and T. Zhang, “A time-aware fault tolerance scheme to improve
reliability of multilevel phase-change memory in the presence of sig-
nificant resistance drift,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 19, no. 8, pp. 1357–1367, 2011.

[5] H. Pozidis, N. Papandreou, A. Sebastian, T. Mittelholzer, M. BrightSky,
C. Lam, and E. Eleftheriou, “Reliable mlc data storage and retention in
phase-change memory after endurance cycling,” in Memory Workshop
(IMW), 2013 5th IEEE International, 2013, pp. 100–103.

[6] A. Prodromakis, G. Sklias, and T. Antonakopoulos, “Emulating the aging
of nand flash memories as a time-variant communications channel,”
in The 6th International Symposium on Communications, Control, and
Signal Processing (ISCCSP 2014), 2014.

[7] S. Korkotsides, G. Bikas, E. Eftaxiadis, and T. Antonakopoulos, “Ber
analysis of mlc nand flash memories based on an asymmetric pam
model,” in The 6th International Symposium on Communications, Con-
trol, and Signal Processing (ISCCSP 2014), 2014.

[8] J. Brewer and M. Gill, Nonvolatile Memory Technologies with Emphasis
on Flash: A Comprehensive Guide to Understanding and Using Flash
Memory Devices. Wiley. com, 2011, vol. 8.

[9] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, “Introduction to
flash memory,” Proceedings of the IEEE, vol. 91, no. 4, pp. 489–502,
2003.

[10] K. Kanda, N. Shibata, T. Hisada, K. Isobe, M. Sato, Y. Shimizu,
T. Shimizu, T. Sugimoto, T. Kobayashi, N. Kanagawa, Y. Kajitani,
T. Ogawa, K. Iwasa, M. Kojima, T. Suzuki, Y. Suzuki, S. Sakai, T. Fu-
jimura, Y. Utsunomiya, T. Hashimoto, N. Kobayashi, Y. Matsumoto,
S. Inoue, Y. Suzuki, Y. Honda, Y. Kato, S. Zaitsu, H. Chibvongodze,
M. Watanabe, H. Ding, N. Ookuma, and R. Yamashita, “A 19 nm 112.8
mm2 64 gb multi-level flash memory with 400 mbit/sec/pin 1.8 v toggle
mode interface,” Solid-State Circuits, IEEE Journal of, vol. 48, no. 1,
pp. 159–167, Jan 2013.

[11] “Open nand flash interface specification, revision 2.0,” ONFI Workgroup,
2008.

[12] N. Papandreou, A. Pantazi, A. Sebastian, M. Breitwisch, C. Lam,
H. Pozidis, and E. Eleftheriou, “Multilevel phase-change memory,” in
Electronics, Circuits, and Systems (ICECS), 2010 17th IEEE Interna-
tional Conference on, 2010, pp. 1017–1020.

[13] K. Prall, “Scaling non-volatile memory below 30nm,” in Non-Volatile
Semiconductor Memory Workshop, 2007 22nd IEEE, Aug 2007, pp. 5–
10.

[14] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Threshold voltage
distribution in mlc nand flash memory: Characterization, analysis, and
modeling,” in Design, Automation Test in Europe Conference Exhibition
(DATE), 2013, 2013, pp. 1285–1290.

[15] D. hwan Lee and W. Sung, “Estimation of nand flash memory threshold
voltage distribution for optimum soft-decision error correction,” Signal
Processing, IEEE Transactions on, vol. 61, no. 2, pp. 440–449, 2013.

[16] N. Papandreou, T. Antonakopoulos, U. Egger, A. Palli, H. Pozidis,
and E. Eleftheriou, “A versatile platform for characterization of solid-
state memory channels,” in Digital Signal Processing (DSP), 2013 18th
International Conference on, 2013, pp. 1–5.

[17] G. Atwood, A. Fazio, D. Mills, and B. Reaves, “Intel strataflash memory
technology overview,” Intel Technology Journal, 1997.

[18] S. Li and T. Zhang, “Improving multi-level nand flash memory stor-
age reliability using concatenated bch-tcm coding,” Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, vol. 18, no. 10, pp.
1412–1420, 2010.

[19] Y. Maeda and H. Kaneko, “Error control coding for multilevel cell
flash memories using nonbinary low-density parity-check codes,” in
Defect and Fault Tolerance in VLSI Systems, 2009. DFT ’09. 24th IEEE
International Symposium on, 2009, pp. 367–375.

[20] G. E. P. Box and M. E. Muller, “A note on the generation of random
normal deviates,” Ann. Math. Statist., vol. 29, no. 2, pp. 610–611, 1958.

