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1. Introduction
Building high performance computing and storage sys-

tems using low-cost, off-the-shelf components is challeng-
ing and it can be exploited in various commercial, enterprise
and scientific applications. Such systems are usually con-
figured using a basic interconnect technology along with
general-purpose (ie. GPUs, SSDs) and reprogrammable
(ie. FPGAs) boards with custom functionality, integrat-
ing application-specific hardware or/and software modules,
while direct communication or shared memory is used for
data exchange. Solid-State Drives (SSDs) use non-volatile
memories for storing and retrieving information in the form
of sectors and/or pages and achieve access rates and re-
sponse times much better than hard disk drives. Among
the most well established interconnect technologies is PCIe
(Peripheral Component Interconnect express) that is used in
various systems, from personal computers up to enterprise
servers and data center installations. PCIe bus is a serial in-
terface that utilizes multiple lanes in parallel and achieves
data rates higher than 1GB/s, whereas SATA rev. 3 can offer
data speeds of approximately 600 MB/s.

In this work we present a dynamically adaptable data ex-
change mechanism for shared memory PCIe systems. The
proposed mechanism is characterized as dynamically adapt-
able, since it adapts its functional parameters according to
the application needs as they are expressed with the applied
workloads, and that results to minimum latency when light
workloads are applied, while the I/O performance is maxi-
mized when heavy workloads have to be serviced. The pro-
posed data exchange mechanism can also be parameterized
in order to achieve the best compromise between minimum
latency and maximum I/O performance, according to the
application specific needs.

2. PCIe Devices and Device Drivers
The increased complexity of today’s commercial, enter-

prise or scientific applications, along with the huge process-

ing power and very high data rates, has made necessary
the use of accelerators for offloading the host CPU/memory
system. To ensure maximum performance, these devices
have to be connected to the host through high-speed I/O in-
terfaces. The most commonly used I/O interface in today’s
motherboards is the full-duplex high-speed PCIe interface.
PCIe devices can access the system host memory without
CPU intervention, by performing direct DMA read/write
memory transactions. On the other hand, user applications
in the host computer can access and manage the PCIe de-
vices only through operating system I/O calls to dedicated
device drivers. Therefore, the maximum performance that
can be achieved by a PCIe device depends on the raw phys-
ical data rates but also by the efficiency of the host-device
I/O interface, ie. the transactions between the device driver
and the device controller.

Usually, I/O data transfers are performed using a struc-
ture of descriptors located in a memory area, shared by both
the host CPU and the PCIe device. Each descriptor contains
the physical address and the size of the data to be trans-
ferred. A transaction is initiated by setting up the proper
descriptors and sending an indication to the device con-
troller. Then, the descriptors are transferred to the device’s
local memory, where the controller processes them, issues
the respective DMA read/write operations from/to the host
memory and executes the application specific data process-
ing functions. When the descriptors have been served, they
are returned to the host, including information regarding the
completion status. This host-initiated descriptor-based ap-
proach can lead to idle execution phases, which basically
results to under utilization of the system’s capabilities [1].

The performance of I/O devices is mainly characterized
by two performance metrics, I/O throughput and end-to-end
latency. Depending on the application, the requirements re-
garding these two parameters may be different or depend-
ing on the applied workload. Due to the potential applica-
tions, the I/O workloads that access the device driver may
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Figure 1. Architecture of the dynamically adaptable PCIe interface and the exchange of descriptors’ blocks.

have different characteristics, e.g. frequent I/O commands
of small data sizes, infrequent ones with large data sizes or
a mixture of all these types.

3. Dynamically Adaptable PCIe Interface
In this work we present a descriptor-based PCIe interface

that is dynamically adaptable to the offered workload. The
architecture of the proposed dynamically adaptable PCIe in-
terface is shown in Fig. 2a. The external device is connected
as a PCIe endpoint on the PCIe root complex of the host
motherboard. The device driver is a block device driver,
compatible with the Linux I/O stack. The I/O requests that
are issued by the user applications are processed in a First-
Come First-Served order and are dispatched to the PCIe de-
vice through a list of descriptors that are dynamically ma-
nipulated using a circular buffer in the shared host memory
space. The interface includes also a set of registers in the
PCIe address space and an interrupt mechanism. Since the
PCIe specification allows the PCIe endpoints to commu-
nicate with each other without host intervention, the pro-
posed interface can be also used for direct device-to-device
data exchange. This way complex systems with dedicated
hardware accelerators and/or high-performance processing
units, such as GPUs, can be built for supporting specific ap-
plication needs.

Each host/device-to-device interface is serviced using a
dedicated dispatch/response queue of descriptors. The de-
scriptors are sent to the PCIe devices in blocks of variable
sizes, where the maximum block size is specified by the
processing capabilities of the devices. The device driver
is constantly evaluating the offered load by observing the
pending requests in its memory space and adjusts the block
size accordingly. As the offered load increases, the de-
scriptors’ block size also increases, and higher I/O rate is
achieved, while when the workload decreases, the descrip-
tors’ block size decreases as well, ensuring better latency.

The PCIe device processes each block of descriptors and
when all descriptors have been serviced, it sends the up-
dated descriptors back to the host and issues an interrupt to
inform the host CPU of the completion. The device driver is
responsible for preserving the order of the completed com-
mands to ensure data consistency with the application layers
at the user level. The interface synchronization between the
various devices, regarding the shared list of descriptors, is
explained with the timing diagram shown in Fig. 2b. In a
typical system, sequential block processing results to loss
of processing power, since idle time occurs between issuing
an interrupt and information update of the next block to be
processed. Delays in the interrupt dispatching by the host,
along with OS delays due to context switching, can lead to
exceptionally big idle execution times despite the fact that
the device driver may have already prepared the subsequent
blocks of descriptors in host memory space. This can lead to
a performance decrease. For confronting this drawback, we
propose an enhancement to this interface with a smart for-
ward command mechanism, where the driver not only sends
the current block of descriptors but also informs the device
regarding the pending descriptors, independent to the size
of the next block. This way, when the device returns a ser-
viced block of descriptors, it already has a number of the
next descriptors in its local memory and starts processing
them. As a result the device remains constantly active and
the maximum performance is achieved. In the oral presenta-
tion we will present experimental results of the application
of this mechanism to a high-performance storage systems
using custom SSDs.
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