
Prototyping and Performance Evaluation of a
Dynamically Adaptable Block Device Driver for

PCIe-based SSDs

Eleni Bougioukou, Athina Ntalla, Aspa Palli, Maria Varsamou and Theodore Antonakopoulos
University of Patras

Department of Electrical and Computer Engineering
Patras 26504, Greece

e-mails: <bougioukou, athinantalla, apalli, mtvars, antonako>@upatras.gr

Abstract—Solid-state drives use non-volatile memories for
storing and retrieving information in the form of sectors and/or
pages and demonstrate better performance than hard disks. In
many cases, the maximum IO performance of the used memory
technology is not achieved due to limitations imposed by the
software device driver that interfaces the storage card with
the hosts’s operating system. Today’s computing machines with
conventional operating systems have been developed based on the
performance characteristics of hard disk drives. In this work,
we present the prototype of a new block device driver with a
flexible host-device interface suitable for PCIe-based solid-state
drives. The block device driver is compatible with the standard
software dataflow of a Linux-based OS, and at the same time
exploits the operational features of such devices to provide
improved performance. Experimental results that demonstrate
how the system performance is affected by decisions on the device
driver’s functionality are presented along with the used testing
methodology.

I. INTRODUCTION

Solid state drives (SSDs) that utilize non-volatile memories
(NVM), like NAND Flash and Phase-Change Media (PCM),
is the most well-established technology for replacing magnetic
hard disk drives (HDD), both in enterprize and consumer
storage systems. This is mainly due to the low I/O latency
that SSDs demonstrate, which is in the order of tens of
microseconds as opposed to tens of milliseconds for HDDs [1].
Multiple NVM channels operating in parallel are used in SSDs,
thus increasing the total I/O rate that can be achieved by an
SSD to nearly a million IOs per second (IOPS), as opposed to
thousands of IOs observed on traditional magnetic hard drives
[2].

Today the most well known NVM technology is NAND
Flash, which is used in almost all commercial SSDs. PCM is a
new emerging NVM technology that demonstrates DRAM-like
read performance, comparable write performance and much
higher endurance than Flash, but still much lower storage
density. Although the various NVM technologies have different
characteristics in terms of minimum and maximum data block
size, rewritability, need for erase before write, endurance, aging
and raw bit error rate, they require similar functionality by the
SSD’s storage controller, which is responsible for transferring
the data between the host system and the actual NVM chips at

��������	
��
���

�
���	��
	�������

�������	
�

��������	
�

�
	������� �������	
�

�	���������

����������
�����
���

�	�

�� � ���������������

Fig. 1. Linux Storage Device I/O stack.

very high rates and with extremely high reliability. To ensure
backward compatibility, first generation SSDs were connected
to a host as external storage devices using the SATA/AHCI
interface. But SATA was designed for replacing mechanical
hard disk drives, and has become increasingly inadequate as
SSDs achieve higher IO performance. High performance SSDs
are connected directly to the host’s internal I/O architecture
through the PCI Express bus [3], a serial interface that can
utilize multiple lanes in parallel and can achieve data rates
higher than 1GB/s, whereas SATA rev. 3 can offer data speeds
of approximately 600 MB/s.

Regarding the interface with the user applications at the
host system and to ensure transition transparency, meaning
no changes at the user-level, the OS software layers and I/O
stack used for the HDDs remain the same and the differences
are encapsulated by an emulation software layer, called the

Flash Translation Layer (FTL), which is added in the SSD’s
storage controller. A major drawback of this approach is that,
since most contemporary OS storage layers and I/O stacks are
developed and optimized based on functional assumptions that
are valid for mechanical disks only, the SSDs are prevented
from reaching their full potential performance. Fig. 1 presents
a commonly used OS stack, the Linux kernel I/O stack
[4]. The applications at the user-level access storage devices
through standard system calls to the filesystem. The kernel
forwards these requests to the virtual filesystem (VFS) layer,
which interfaces generic filesystem calls to filesystem-specific
functions. The filesystem is aware of the logical layout of data
and metadata on the storage medium and sends read and write
requests of fixed-size data blocks (usually 4K bytes, named
pages) to the block layer on behalf of the user applications.

The block layer provides an abstract interface which
conceals the differences between storage devices of different
technologies. User-level applications are also allowed to
directly access mass storage devices without using a filesystem
to manage data. This path is called “Direct” or “Raw” I/O.
Block requests enter a request queue and finally arrive at
the device driver, which is responsible for exchanging data
with the storage device according to a specific host controller
interface [5].

The performance of an SSD, both in terms of I/O
latency and I/O throughput (in kIOPS), depends on the
characteristics of various components, i.e. the used NVM
technology, the NVM channel, the internal architecture of
the storage controller, the host I/O interface and the upper
layer software components, especially the device driver.
As aforementioned, the traditional OS storage layers are
tailored on HDDs characteristics and impose a performance
bottleneck on SSDs. Due to that, some applications and
device drivers are choosing to bypass the traditional stack,
thus improving the resulting performance [6]. This choice
increases complexity and removes generic features that are
provided by a common OS storage layer. In another work, a
modification of the block layer was proposed that adds multiple
I/O submission/completion queues in both software/hardware
levels to exploit the multicore architecture [7].

In this work, we present the architecture of a dynamic
block device driver that is compatible with the conventional
Linux I/O stack, but at the same time it takes into account
the special characteristics of a PCIe NVM storage device,
thus providing a high-performance interface between the host
computer and the storage device. The proposed device driver
is characterized as dynamically adaptable, since it changes in
real time its functional parameters according to the applied
user workloads. As a result, minimum latency is observed
when light workloads are applied, while the I/O throughput
is maximized when heavy workloads have to be serviced.
Although the device driver has been developed in the Linux
environment, with some necessary modifications, it can be
used in any OS system. The adaptability of the device driver
is supported by a customized high-performance PCIe host
controller interface, based on dynamically-changing queues.
To evaluate the performance of both the proposed device
driver and the PCIe host controller interface and investigate
various workload adaptation techniques, a complete PCIe
storage device prototype was built, which incorporates both

����
��������
������������ ��������������

�����������	
�����

�����������

 ��

�����������

	
�����
�

������	
��
�����

����

	��������

!" �
����"���	�#

���� ��

!" �
$����
�

����	!������
�

��%
��&���

!" �
"����		��'
������������ ���' �'�

$��
���

���'�
"����		��

���'

Fig. 2. PCIe NVM storage device architecture.

dedicated reconfigurable hardware components and optimized
microprocessor software modules.

Section II describes the general architecture of the PCIe
storage device, with emphasis on the block device driver
and the PCIe host controller interface. The dynamically
adaptable device driver is further analyzed in Section III
and performance measurements for various workloads are
presented and analyzed in Section IV.

II. PCIE STORAGE DEVICE SW/HW ARCHITECTURE

Fig. 2 shows the structure of the dynamic device driver for
PCIe NVM storage devices proposed in this work, along with
the general architecture of such a device, which supports the
proposed PCIe host controller interface. The Linux-compatible
block device driver accepts I/O requests from the user
applications through the Linux block layer and responds
with the relevant I/O completions. The operating systems
provide advanced algorithms to order the incoming requests,
which are tailored to the inherent characteristics of hard
disks. For example, in hard disks, due to the rotational delay
and head seek time, random accesses that require frequent
disk head movement are slow, while sequential accesses that
only require rotation of the disk platter are fast. To achieve

higher performance, various scheduling functions have been
incorporated in the block layer that queue multiple commands
to minimize head movement or re-order commands taking
rotational positioning into account. However, since SSDs often
exhibit negligible latency difference between sequential and
random I/Os, these queue management functions are of no
use and add unnecessary CPU overhead. Because of that, the
interface of the proposed device driver with the upper Linux
layers was designed to substitute the scheduling algorithms in
the block layer with a straightforward approach, where all I/O
requests enter an unordered queue and they are processed by
the device in a First-Come First-Served (FCFS) order.

The NVM storage device is connected as a PCIe endpoint
on a slot of the PCIe root complex of the host motherboard and
the device driver is responsible for forwarding the read/write
requests to the device according to the PCIe host controller
interface. In most contemporary SATA, SAS and PCI-E based
SSDs, information and data exchange is achieved through
a submission queue and a completion queue, stored in a
memory space on the host’s main memory, which can be
accessed by both the PCIe device and the host processor,
supported by a set of registers in the PCIe address space
and an interrupt mechanism, where a single interrupt is used
to signal completions. This interface has been inherited by
the HDDs that always service commands in a serial way
and does not exploit a crucial feature of SSDs, meaning the
ability to execute simultaneously many different read/write
requests, due to the fact that the NV memories are used in
sets of chips that operate in parallel. To exploit the increased
parallelism of SSDs, recently a new PCIe interface was
proposed, namely NVM Express [8], which supports a flexible
number of submission and completion queues. With NVMe
each user-space process can have its own submission and
completion queue to the SSD accompanied by a dedicated
interrupt. However, its implementation involves complicated
interrupt handling and thread synchronization routines and
usually requires modifications at the user-application level. To
ensure user data consistency and OS compatibility, we propose
a low-complexity flexible PCIe interface, which still uses a
single submission/completion queue, but the requests are sent
to the storage device in variable-size blocks and the maximum
block size is determined by the parallelism capability of the
storage device.

I/O commands/responses are exchanged through a list
of descriptors stored in a circular buffer, which represents
the submission/completion queue. A block of descriptors
corresponds to a subset of the total number of descriptors
in the list. All descriptors in a block are continuous in the
descriptors’ memory space and the blocks are dispatched in a
sequential way. Each descriptor contains information regarding
the location of data in the host’s main memory and the
respective storage area in the NVM memory space, combined
with necessary control flags, such as descriptor ownership (host
or device). Certain fields are valid only when the descriptor
corresponds to a response and indicate successful execution
or not and type of error, if any. Fig. 3 explains the interface
synchronization between the host device driver and the PCIe
device using a timing execution diagram. When the device
driver has a new block of descriptors to send to the storage
device, it notifies the device and provides the offset of the next
block to be processed along with its size through registers in

����

�����	

����"���#����
�$��%��
�������&����

����
	�%�	

����"���#�
����$��%��
�������&����

����
	�%

�����������
� � � � �� �

��������	��
���
� �� � ��

����
���
� �� 	� �

������������
����������������
�������� !"#������ #

���������������������
� !"#

������������������	��
���
��
����������������

�����'()*+�������	��%,���������(-*+.

��$������
��������
������������
���������� /

��� �� "�
0 (-*+ �� !�	���%

������������
����������������
����� � #���������� /

�������"�
0�(-*+����!�	���%

� � � 	� �

����
���
�������	��
�����
�����
�������������

������������
����������������
�������� #�����
� %"#

������� #

��������	��
����
�����������

������������������
�������������������� #

&���������������
�������������������� #

�����'(+�������	��%,���������(-1+.

��$������
��������
����������

������������
����������������
����� � %"#������������

����������

��������	��
��
������������

/

�������"�
0�(�+�������
�%

������������
����������������
�������� %"#������'#

����
���
�������	��
�����
���
�����������

������� "#

Fig. 3. Exchange of blocks of descriptors between the host and the PCIe
storage device.

the PCIe address space. Then the device transfers the block
in its local memory, where the descriptors are processed and
the respective read/write data transactions are initiated. To
ensure data integrity, the host processor is not allowed to
access the memory space allocated to the block of descriptors
that is currently being processed by the storage device. When
the block has been fully serviced and the content of the
descriptors has been updated with the responses, the PCIe
device returns the block to the host memory and informs the
host processor by generating an interrupt. Alternative modes
where each descriptor is returned to the host immediately
as the respective command has been completed or the block
is returned in subsets are also supported. Then, the device
driver processes the returned block, generates the respective
I/O completions of the original I/O requests and at the same
time grants access to the PCIe device for the next block of
descriptors. The diagram also presents a future enhancement
of this interface. For optimization purposes, when the device
returns a serviced block of descriptors, it already has the
first commands of the next block in its local memory and
starts processing them locally, before getting the next block of
commands. This enhancement is currently under development,
but the first simulation and experimental results show that
this approach can further improve the interface’s efficiency,
especially when Gen-3 PCIe technology is used.

Apart from the NVM storage channels and the associated
controllers, the general architecture of a PCIe storage device
that supports the proposed interface also includes a PCIe
controller, local BRAM memory and a microprocessor that
acts as the system’s supervisor and coordinator. One or more
local busses are used for transferring the data between the
memory, the PCIe interface and the NVM storage controllers

����
���	�
� ����

���	�
�
�
������

(
)
*

%
�

��� ���� �������������

�

�

�

�*
+
,
-
-
-
-

(
)
*
-
-

. *

���� �����
�
���

�����

�

-
./*
./)

./*

./)

����

%
�

�����
�����
�0�����

'�����

"����	�

��

��

������
�� !�"�
�

#��$%
������	!�

�
��
!"�
�

&������"�'�������

���	�
�

���
����

�����
���
����

()*

� �
� ! "

+�"�,���"��

"�

���
����
-

.

Fig. 4. Device driver architecture.

using dedicated DMA engines. When the microprocessor is
notified that a new block of descriptors is available in the
host memory, it initiates a PCIe DMA transaction to transfer
the descriptors in its local memory. Then the descriptors are
processed one-by-one or in parallel and depending on the type
of I/O commands, it initiates PCIe DMA data transactions
from/to the host memory and writes/reads data to/from the
NVM chips accordingly. When a command completes, the
microprocessor checks for errors and updates the respective
descriptor. The updated block of descriptors is returned to the
host via a PCIe DMA transaction followed by a PCIe interrupt.
A single DMA engine may be used for both descriptors and
data transfers or multiple separate ones.

III. DYNAMICALLY ADAPTABLE BLOCK DEVICE DRIVER

Fig. 4 provides a detailed description of the functionalities
of the dynamic device driver, which consists of three main
functions, namely I/O Requests Handler, New Descriptors
Block Processor and I/O Responses Generator. The I/O
Requests Handler function handles all requests received from
the higher layers. Linux defines a special structure to represent
the I/O request between the block layer and the device driver,
which is called ‘bio’ and corresponds to 4KBytes Linux page
data transfer. The bios are passed directly from the block
layer to the driver space without any prior manipulation and
then they are added to a dedicated request queue. The device
driver is responsible for transforming each bio into a suitable
descriptor, which is then placed into the interface queue and
eventually is passed to the storage device for processing. Each
descriptor is filled with information about the owner of the
descriptor (host or PCIe device), the activity (command or
response), the type of request (read or write), the physical
address at the host main memory and the data offset in the PCIe
device address space. When the driver receives an interrupt

from the PCIe device that signals the completion of the
previous block, the New Descriptors Block Processor function
is activated for dispatching a new block with descriptors to the
PCIe device, if there are pending requests. To be able to adapt
to different workload conditions, the descriptors are passed
to the PCIe device in variable-size blocks. In the special case
where a new descriptor is created when the PCIe device is idle,
a block with a single descriptor is dispatched directly by the
I/O Requests Handler function. Registers in the PCIe address
space hold the offset of the new block in the interface queue
along with its size. Additionally, the New Descriptors Block
Processor function wakes up the I/O Responses Generators
function, which processes the block with the responses that
have just been returned by the PCIe device. This function
checks one by one all the updated descriptors of the returned
block, generates the respective I/O completions for the original
I/O requests and sends them to the user applications through
the block layer, preserving the original order. In the case that
there were errors during data transfers, the I/O completions
inform the user applications accordingly. Finally, it resets the
appropriate descriptors in the interface queue, making them
available for new transactions. At the same time, the driver
continues processing requests arriving from the block layer.

Necessary structures that ensure synchronization between
the bios’ queue and the interface queue are defined. More
specifically, a special ‘Bios Array’ is defined, which keeps the
memory pointers of the pending bio structures, along with two
pointer variables, one which points to the first free position in
the interface queue for the future descriptors and another one
which points to the first descriptor of the next block that will
be sent to the PCIe device. To avoid time-consuming search
software routines, the position of each bio pointer in the ‘Bios
Array’ corresponds to the position of the respective descriptor
in the interface queue. So, the size of the ‘Bios Array’ depends
on the total number of descriptors that can be stored in
the interface queue at the host main memory. The interface
queue is implemented as a cyclic buffer, whose size is fixed
and is determined by the OS during initialization, based on
parameters retrieved by the storage device. These parameters
provide information regarding its internal architecture (storage
capacity, NVM technology, number of channels, read/write
times etc.). For implementation complexity reasons, the size
of the interface queue is always a power of two. Every time a
block of descriptors is returned from the PCIe device, the I/O
Responses Generator function finds the respective bio pointers
in the ‘Bios Array’, generates I/O completions and removes the
pointers from the array.

A major advantage of the proposed device driver structure
is that it supports variable-size blocks of descriptors. The
maximum supported descriptors’ block size, determined by
the internal capabilities and functional characteristics of the
PCIe storage device (e.g. number of NVM channels, different
queues to serve even/odd pages), could be used as a fixed
block size of this interface. However, in the case of light
workloads, if the driver had to wait for the maximum number
of descriptors to be collected, the resulting latency would
increase significantly. For that reason, the proposed device
driver specifies dynamically the size of the next block,
according to the currently applied workload. That means that
whenever the PCIe device sends an interrupt to inform host of
its availability, the New Descriptors Block Processor function

decides the size of the next block of descriptors, taking into
account the number of pending requests and the status of the
PCIe device. It then dispatches either a maximum size block,
leading to maximum possible I/O throughput, or a block with
all pending requests, minimizing the I/O latency.

IV. PERFORMANCE RESULTS

For this work, a complete PCIe storage device prototype
was built using the powerful Xilinx ZC706 development
platform, which is based on the Zynq-7000 All Programmable
SoC architecture. Zynq-7000 integrates a feature-rich dual-core
ARM Cortex-A9 MPCore based processing system and Xilinx
programmable logic in a single device. The ARM CPU is the
heart of the processing system which also includes on-chip
memory, external memory interfaces, and a rich set of I/O
peripherals. The various hardware controllers as well as the
processing system are I/O interconnected via high-bandwidth
AMBA AXI interfaces. The ZC706 board provides a hardware
environment for developing and evaluating designs targeting
the Zynq-7000 Programmable SoC and includes features,
such as DDR3 SODIMM memory component and four-lane
PCIe Gen. 2 interface, that enable building high-performance
embedded systems.

Based on this platform, we were able to build the prototype
of a highly reconfigurable PCIe storage device, which was
used to validate the efficiency of the proposed dynamic device
driver and PCIe host controller interface for PCIe NVM
storage devices, to investigate alternative configurations and
procedures and to evaluate the performance of the various
components individually and the whole system as well. Since
in this work we are focusing on the performance of the device
driver and the PCIe interface, instead of the actual NVM chips,
the DDR3 memory of the ZC706 platform was used. This
way the only hardware limitation is the read/write rates of the
DDR3 SODIMM controller.

Initially, the efficiency of the proposed PCIe host controller
interface was studied independently to the device driver,
because the performance of a storage device, as it is observed
by the user, both in terms of KIOPS and I/O latency, is
significantly affected by the performance of the interface
between the host and the storage device. In the case of
a PCIe-based interface, its performance depends on the
efficiency of the PCIe controller both in the host root complex
side and the device endpoint side, the number of PCIe
transactions needed for each data transfer, which is determined
by the communication protocol between the host and device,
and the type of command (PCIe read commands require
more PCIe packets than the PCIe write commands for the
same ammount of data). Regarding the proposed interface,
the number of distinct PCIe transactions needed depend on
the size of the block of descriptors, whether it is fixed
or changes dynamically, the number of DMA engines used
in parallel and how the responses are generated (i.e. all
responses in a single block, each response is generated when
the respective command has been completed, or in sets of
completed commands).

In order to study the effect of the size of the block of
descriptors, a static version of the device driver was used,
where the descriptors are exchanged in blocks of predefined

0 4 8 12 16 20 24 28 32
0

20

40

60

80

100

120

140

160

Descriptors per Block

Th
ro

ug
hp

ut
 [k

IO
P

s]

PCIe Host Controller Interface Performance

Complete Block Completion
Single Descriptor Completion − Single DMA
Single Descriptor Completion − Double DMA

Write

Read

Fig. 5. Maximum performance achieved when fixed size blocks are used.

size, less than or equal to the maximum number of requests
that the storage device can support in parallel. The lowest
I/O latency is achieved when a single new request is sent
to the PCIe card. On the contrary, the highest throughput is
achieved when the full parallelism of the storage device is
exploited, usually expressed as the maximum block size. To
measure the maximum achievable performance at the interface,
the device driver was constantly fed with I/O requests, so
that there are always pending full blocks of descriptors. Fig.
5 highlights the performance of the system, in terms of
throughput, versus the size of the block of descriptors when
only read or write requests are serviced, for two different
policies that the device may support, complete block and
one-by-one descriptor response. Especially for the case of
the one-by-one descriptor response, the use of an additional
DMA engine dedicated solely to descriptors transfers was also
investigated.

It is obvious that as the number of PCIe transactions
needed to be performed for the same amount of descriptors
and data transfers increases, the total exchange rate decreases.
However, to better analyze this case, the block processing
procedure in the storage device must be examined. Each block
of descriptors is initially transferred in the local memory
with a DMA PCIe transaction, and then the microprocessor
starts analyzing the descriptors’ contents and executes the
commands. Depending on the type of command (read or
write), for each descriptor a different type of DMA PCIe
(Device-to-Host or Host-to-Device) transaction is initiated.
To optimize the performance, while waiting for the DMA
transaction to be completed, the microprocessor starts servicing
the next command. So, the inter-command execution time
is determined by either the DMA completion time or
the command processing time, whichever is the maximum.
Although the descriptor processing time is independent to
the type of its requests, read or write, the inter-command
execution time is significantly higher in the case of a write
request. This is due to the different PCIe procedures regarding
the read and write transactions, as well as variations in the
implementation efficiency of the hardwired PCIe controller of
the ZC706 development platform. As a result, the maximum
I/O throughput can be achieved when the user performs only
read operations. Since data are stored in DRAM and not

0 20 40 60
0

20

40

60

80

100

120

140

160

Offered Load [Number of Threads]

Th
ro

ug
hp

ut
 [k

IO
P

s]

Device to Host Memory (Read)

1 descr/block

2 descr/block

8 descr/block

32 descr/block

0 20 40 60
0

20

40

60

80

100

120

140

160

Offered Load [Number of Threads]

Th
ro

ug
hp

ut
 [k

IO
P

s]

Host Memory to Device (Write)

1 descr/block

2 descr/block

8 descr/block

32 descr/block

Fig. 6. Performance of the static version of the block device driver.

in actual NVM technology, which is characterized by much
higher read/write times, this is the maximum performance that
can be achieved in such a storage device. Mixed workloads will
achieve a performance between the all-read and the all-write
performances.

Finally, in the case when each descriptor is answered to
the host individually, the DMA engine is blocked and cannot
be used for the data transfer of the next command until the
previous descriptor has been successfully transferred to the
host memory. Since these are two independent processes, this
situation can be avoided by using a separate DMA engine
for the transfer of descriptors. It should be noted that the
I/O latency is affected by the descriptors’ block size and the
serviced descriptors’ return strategy. The lowest latency can
be achieved with the smallest block size and by having each
descriptor returned to host immediately as it is served, while
the maximum I/O rate is achieved by maximizing the block
size and by answering all commands as a single block.

For estimating the performance of the complete
architecture, device driver and PCIe interface, the user-space
tool named Fio was used [9]. Fio is a common benchmarking
tool for mass storage devices that support both synchronous
and asynchronous, direct and filesystem I/Os using one or
multiple threads. A constant flow of requests is generated,
random or sequential, with a specified percentage of read/write
requests. It reports statistics such as IOPS, throughput, and
average latency. We used the tool to generate different
workloads, where a number of threads that run in parallel
send continuously direct synchronous I/O requests to the
block device. Fig. 6 shows the performance of the system
with the static version of the device driver, in terms of
throughput in KIOPS, versus the number of threads and
different descriptors’ block sizes, for read-only and write-only
workloads. To be able to estimate the maximum performance
that can be achieved by the device driver for the various
configurations, only full descriptors’ blocks are allowed to
be sent to the PCIe device. That, along with the fact that
synchronous user-space requests are blocked until they are
completed, the testing methodology explains why there are
no measurements for number of threads less than the number

0 50 100
0

20

40

60

80

100

120

140

160

Offered Load [Number of Threads]

Th
ro

ug
hp

ut
 [k

IO
P

s]

4kB Block Size

Read

Write

0 50 100 150
0

100

200

300

400

500

600

700

800

Throughput [kIOPs]

La
te

nc
y

[u
se

cs
]

4kB Block size

Read

Write

Fig. 7. Performance of the dynamic version of the block device driver.

of descriptors in a block.

The system reaches its maximum performance when the
offered load is such that there always exists a full descriptors’
block with pending requests when the device driver gets an
interrupt that signals the availability of the storage device. For
any descriptors’ block size, this can only be achieved if the
number of threads that issue parallel requests is greater than
that particular size. Since the driver grants access to the storage
device for only one block with a fixed number of descriptors at
a time, any increase in the number of threads, and consequently
the offered load, does not further improve throughput. The
additional requests are just stored in the device driver host
memory waiting for another block to be sent to the storage
device. Although the throughput is improving significantly for
larger descriptors’ block sizes, the latency also increases. So, it
would be preferable if the descriptors’ block size was updated
dynamically according to the applied workload.

A. The Dynamically Adaptable Device Driver

Fig. 7 demonstrates the performance achieved using the
dynamically adaptable version of the device driver, for
read-only and write-only scenarios. This figure also presents
the relation between throughput and latency observed in the
system. In this case, the number of descriptors that can be
sent to the storage device varies according to the offered
workload. As the offered load increases, the descriptors’
block size also increases, and higher I/O rate is achieved,
while when the workload decreases, the descriptors’ block
size decreases as well, ensuring better latency. Fig. 7 verifies
that the driver adapts to the offered load and the maximum
achievable throughput is achieved for all cases. As the offered
load exceeds the system’s storage capability, the latency, as
expected, increases exponentially.

In all experiments, the Fio tool was configured to send
synchronous requests of 4kB data blocks. Each request enters
the device driver as one bio structure that represents one Linux
page transfer and the user application cannot send another
request before the previous request has been completed.
However, a user application may issue requests of variable
sizes. Since Linux manages data in 4kB pages, requests of less

0 500 1000
0

20

40

60

80

100

120

140

160

Block size[kB]

Th
ro

ug
hp

ut
 [k

IO
P

s]

Read

Write

0 50 100 150
0

100

200

300

400

500

600

700

800

Throughput [kIOPs]

La
te

nc
y

[u
se

cs
] Read

Write

1 thread
8 threads

8 threads
1 thread

Fig. 8. The effect of single and multi-threaded applications with variable
block sizes.

that 4kB are executed with one 4kB transaction with padding
bytes, while requests of more than 4kB are partitioned and
enter the device driver level as multiple bios of 4kB data
blocks. For a request to be completed, the total number of
corresponding bios has to be serviced. Fig. 8 shows that the
size of the data requests generated by the user applications has
a significant effect on the performance of the storage device. It
can be seen that when a single-threaded user-space application
uses data requests of large block sizes, a better throughput can
be achieved, but at the same time the latency also increases.

V. CONCLUSIONS

We presented a dynamically adaptable block device driver
for PCIe-based SSDs along with a suitable PCIe host controller
interface. The device driver adapts its parameters to the
user applied workloads and to the current status of the

storage device, and that results to minimum latency and
high I/O performance when light and heavy workloads are
applied respectively. A fully-functional PCIe storage device
prototype was built and various configurations and system
parameters were studied. Experimental results have shown that
the presented approach can fully exploit the capabilities of
the used storage device when proper loading conditions are
applied.

ACKNOWLEDGMENT

This work was supported by the IBM Zurich Research
Laboratory in the framework of a Joint Research Program.

REFERENCES

[1] J. Brewer and M. Gill, “Nonvolatile memory technologies with emphasis
on flash: A comprehensive guide to understanding and using flash
memory devices,” Wiley-IEEE Press, 2008.

[2] Feng Chen, Rubao Lee and Xiaodong Zhang, “Essential roles of
exploiting internal parallelism of flash memory based solid state drives in
high-speed data processing,” in The 17th IEEE International Symposium
on High Performance Computer Architecture (HPCA), San Antonio,
Texas, USA, February 12-16 2011.

[3] “PCI Express Base Specification, Revision 2.1,” PCI SIG, Tech. Rep.,
March 4, 2009.

[4] D. P. Bovet and M. Cesati, Understanding The Linux Kernel., 3rd ed.
Oreilly & Associates Inc., 2005.

[5] J. C. A. Rubini and G. Kroah-Hartman, Linux Device Drivers., 3rd ed.
Oreilly & Associates Inc., 2005.

[6] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De, J. Coburn, and S.
Swanson, “Providing safe, user space access to fast, solid state disks,”
SIGARCH Comput. Archit. News, vol. 40, pp. 387–400, 2012.

[7] Matias Bjoerling, Jens Axboe, David Nellans and Philippe Bonnet,
“Linux block io: Introducing multi-queue ssd access on multi-core
systems,” in The 6th ACM International Systems and Storage Conference
- SYSTOR13, Haifa, Israel, June 30July 2 2013.

[8] “NVM Express Specification, Revision 1.1a,” NVMHCI Workgroup,
Tech. Rep., September 23, 2013.

[9] Fio: Flexible i/o tester. [Online]. Available:
http://freshmeat.net/projects/fio/

