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___________________________________________________________________________________________ 
 
Abstract 
 
Solid state drives (SSDs) are based on non-volatile memories, like NAND Flash, and usually support fixed size data 
blocks. The typical data granularity is sector (512 B) or page (4 KB). Next generation SSDs will use new memory 
technologies, like Phase Change Materials (PCM) or 3D NAND Flash, with more advanced characteristics, ie. direct 
access of large data blocks and simultaneous support of small data chunks. For being able to support new types of 
applications, the SSDs must also be able to support various data sizes at their native data structures. In order to fully 
explore the capabilities of the underlying storage technology, this functionality requires the use of more advanced device 
drivers at the operating system. In this work, we present the architecture of such a hybrid Linux device driver, which 
supports concurrently the functionality of block and character device driver.  

 __________________________________________________________________________________________ 
 
1. Introduction 
 

SSDs are used extensively in today's embedded 
computing systems, either for storage purposes or as low-
cost caching modules. SSDs are the most well-established 
technology for replacing magnetic hard disk drives, both in 
enterprise and consumer storage systems. This is mainly due 
to the low I/O latency that SSDs demonstrate which is in the 
order of tens of microseconds as opposed to tens of 
milliseconds for HDDS [1]. High performance SSDs are 
connected directly to the computing system's internal I/O 
architecture using the PCI Express (PCIe) bus, an interface 
that utilizes multiple serial Gbps lanes in parallel and 
achieves data rates of a few GB/s, depending on the used 
PCIe technology [2]. The PCIe functionality is exploited by 
using shared memory structures at the host memory for 
information exchange between the SSD's internal controller 
and the device driver internal logic.  

Fig.1 presents a commonly used OS stack, the Linux 
kernel I/O stack [3]. The applications at the user-level access 
the storage devices through various system calls. The kernel 
forwards large data block requests to the virtual filesystem 
layer, which uses generic filesystem calls based on 
filesystem-specific functions. The filesystem is aware of the 
logical layout of data and metadata on the storage medium 
and sends read and write requests of fixed-size data blocks 
(typical size is 4K, named pages, and minimum size is 512 
bytes) to the block layer on behalf of the user applications. 
The block layer provides an abstract interface which 
conceals the differences between storage devices of different 
technologies. User-level applications are also allowed to 
directly access the mass storage devices without the 
intervention of the filesystem for managing their data. This 
path is called “Direct” or “Raw” I/O. Block requests enter a 
request queue and finally arrive at the device driver, which is 
responsible for exchanging data with the storage device 
according to a specific host controller interface [4]. 

Next generation SSDs will use new memory 
technologies, like Phase Change Materials (PCM) or 3D 
NAND Flash, with more advanced characteristics, i.e. direct 
access of large data blocks and small data chunks. For being  

 

 
Fig. 1 Linux storage device I/O stack 

able to support new types of applications, these SSDs must 
also be able to support various data sizes at their native data 
structures. In order to fully explore the capabilities of the 
underlying storage technology, this functionality requires the 
use of more advanced device drivers at the operating system. 

In this work, we present the architecture of such a hybrid 
Linux device driver. The driver interacts with various kernel 
modules (block device drivers, character device drivers etc). 
Unlike traditional device drivers, it can accept requests of 
various data size i.e. large data blocks and/or small data 
chunks. The device driver is responsible for dispatching 
these requests to the actual storage device according to their 
interface. Information and data exchange is achieved by 
using a shared memory space on the main memory of the 
host, a set of registers in the PCIe address space and an 
interrupt mechanism. 
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2. Hybrid Device Driver 
 

Fig.2 presents the Linux kernel I/O stack for the 
proposed hybrid device driver. User applications interact 
with any of the known Linux devices (block, character) 
sending them I/O requests of various data sizes. These 
modules make use of a custom interface exported by the 
hybrid device driver and transfer the requests to it. The 
hybrid device driver can accept requests from multiple 
modules at the same time. These requests are queued and 
dispatched to the storage device by using a flexible PCIe 
based interface. Finally, the hybrid device driver responds 
with the relevant I/O completions to the corresponding 
modules. I/O requests/completions are exchanged through a 
list of descriptors stored in a circular buffer, which 
represents the submission/response queue, as shown in 
Fig.3. 

The driver is responsible for transforming each request 
to a suitable descriptor that will be passed to the storage 
device for processing. Each descriptor, stored in the circular 
buffer (host main memory), can be accessed by the PCIe 
storage device and the host processor. The descriptors are 
passed to the PCIe device in blocks of variable size. The 
blocks’ size is dynamically adjusted in order to achieve high 
data rates, especially when the offered load is high. A block 
of descriptors corresponds to a subset of the total number of 
descriptors in the list. The offset of the next block to be 
processed along with its size are notified to the PCIe device 
through registers in the PCIe address space. Then, with a 
DMA transaction, the PCIe device transfers the block in its 
local memory, where the microprocessor processes the 
descriptors and initiates the respective read/write data 
transactions. In the mean time, driver continuous processes 
requests arriving from the various kernel modules. To ensure 
data integrity, access is forbidden to the memory space 
allocated to the block of descriptors that is currently being 
processed by the storage device. When a block has been 
fully processed and the content of its descriptors has been 
updated, the PCIe device returns the block to the host 
memory and informs the host processor by generating an 
interrupt. 

Fig.4 provides a detailed description of the functionality 
of the hybrid device driver, which consists of three main 
functions, namely I/O Requests Handler, New Descriptors 
Block Processor and I/O Responses Generator. The I/O 
Requests Handler handles all requests received from the 
higher layers. The device driver transforms each request into 
a suitable descriptor, which is then placed into a shared 
memory and eventually is passed to the storage device for 
processing. Each descriptor is filled with information about 
its owner (host or PCIe device), the activity (command or 
response), the type of request (read or write), the physical 
address at the host main memory and the data offset in the 
PCIe device address space. Each request is placed into a 
waiting queue until it is completed.  

When the driver receives an interrupt from the PCIe 
device that signals the completion of the previous block, the 
New Descriptors Block Processor function is activated for 
dispatching a new block with descriptors to the PCIe device, 
if there are any pending requests. To be able to adapt to 
different workloads, the descriptors are passed to the PCIe 
device in variable-size blocks. In the special case where a 
new descriptor is created when the PCIe device is idle, a 
block with a single descriptor is dispatched directly by the 
I/O Requests Handler function. 

 

 
Fig. 2 Linux storage device I/O stack with hybrid device driver 

 
Fig. 3 Hybrid device driver 

In this case, the system experiences the minimum possible 
latency. Registers at the PCIe address space hold the offset 
of the new block in the interface queue along with its size.  

The New Descriptors Block Processor function wakes up 
the I/O Responses Generator function, which processes the 
block with the responses that have just been received by the 
PCIe device. This function checks sequentially all 
descriptors of the returned block and resets them in the 
shared memory, making them available for new transactions. 
It also wakes up the original I/O requests and generates I/O 
completions to the corresponding kernel devices, preserving 
their order.  

Fig. 5 presents the synchronization between the host 
device driver and the PCIe device. When the device driver 
has a new block of descriptors to send to the storage device, 
it notifies the device and provides the offset of the next 
block to be processed along with its size through registers in 
the PCIe address space. Then the device transfers the block 
to its local memory, where the descriptors are processed and 
the respective read/write data transactions are initiated. 
When the block has been fully serviced and the content of 
the descriptors has been updated with the responses, the 
PCIe device returns the block to the host memory and 
informs the host processor by generating an interrupt.
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Fig. 4 The hybrid device driver architecture 

 
Other modes of operation are also supported, ie. a descriptor 
is returned to the host immediately as the respective 
command has been completed or a block is partially 
answered using subsets. Then, the device driver processes 
the returned block, generates the respective I/O completions 
of the original I/O requests and at the same time grants 
access to the PCIe device for the next block of descriptors.  

The diagram also presents an enhancement of this 
interface. In a typical system, sequential block processing 
results to loss of processing power, since idle time occurs 
between issuing an interrupt and information update of the 
next block to be processed. Delays in the interrupt 
dispatching by the host, along with OS delays due to context 
switching, can lead to exceptionally high idle execution 
times despite the fact that the device driver may have 
already prepared the subsequent blocks of descriptors in host 
memory space. This can lead to performance degradation. 
For confronting this, we propose an enhancement to this 
interface with a smart forward command mechanism, where 
the driver not only sends the current block of descriptors but 
also informs the device regarding a few pending descriptors, 
independent to the size of the next block. This way, when 
the device returns a serviced block of descriptors, it already 
has a number of the next descriptors in its local memory and 
starts processing them. As a result, the device remains 
constantly active and the maximum performance is 
achieved.  
A major advantage of the proposed device driver structure is 
that it supports dynamically adaptable and variable-size 
blocks of descriptors. The maximum supported descriptors' 
block size is determined by the internal capabilities and 
functional characteristics of the PCIe storage device. For that 
reason, the proposed device driver specifies dynamically the 
size of the next block, according to the currently applied 
workload. That means that whenever the PCIe device sends 
an interrupt to inform the host of its availability, the New 
Descriptors Block Processor function determines the size of 
the next block of descriptors, taking into account the number 
of pending requests and the status of the PCIe device. It then 
dispatches either a maximum size block, leading to 
maximum possible I/O throughput, or a block with all 
pending requests, minimizing I/O latency. 

 

 
Fig. 5 Exchange of blocks of descriptors between the host and the PCIe 
storage device.  

 
3. Experimental Results 
 

For this work, a complete PCIe storage device prototype 
was built using the powerful Xilinx ZC706 development 
platform, which is based on the Zynq-7000 SoC architecture. 
Zynq-7000 integrates a feature-rich dual-core ARM Cortex-
A9 MPCore processing system and Xilinx programmable 
logic in a single device. The ARM CPU is the heart of the 
processing system which also includes on-chip memory, 
external memory interfaces, and a rich set of I/O peripherals. 
The various hardware controllers as well as the processing 
system are I/O interconnected via high-bandwidth AMBA 
AXI interfaces. The ZC706 board provides a hardware 
environment for developing and evaluating designs targeting 
the Zynq-7000 Programmable SoC and includes features, 
such as DDR3 SODIMM memory component and four-lane 
PCIe Gen. 2 interface, that enable building high-
performance embedded systems. Based on this platform, we 
were able to build the prototype of a highly reconfigurable 
PCIe storage device, which was used to validate the 
efficiency of the proposed hybrid device driver and PCIe 
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host controller interface for PCIe storage devices, to 
investigate alternative configurations and procedures and to 
evaluate the performance of the various components 
individually and the whole system as well. Since in this 
work we are focusing on the performance of the device 
driver and the PCIe interface, instead of the actual chips, the 
DDR3 memory of the ZC706 platform was used. This way 
the only hardware limitation is the read/write rates of the 
DDR3 SODIMM controller. 

Each block of descriptors is initially transferred in the 
local memory with a DMA PCIe transaction, and then the 
microprocessor starts analyzing the descriptors' contents and 
executes the commands. Depending on the type of command 
(read or write), for each descriptor a different type of DMA 
PCIe (Device-to-Host or Host-to-Device) transaction is 
initiated. There are two different scenarios. Each descriptor 
is answered to the host individually or the whole block with 
descriptors is processed and finally answered to the host. 

According to the experimental results of Fig. 6 higher 
performance is achieved during a read operation. This is due 
to the different PCIe procedures regarding the read and write 
transactions, as well as variations in the implementation 
efficiency of the hardwired PCIe controller of the ZC706 
development platform. In the case when descriptor is 
answered to the host individually (4K, RPR), the DMA 
engine is blocked and cannot be used for the data transfer of 
the next command until the previous descriptor has been 
successfully transferred to the host memory. So the 
performance decreases as the block size is increased.  In the 
case of answering all the commands as a single block (4K, 
RPB) we can see that the maximum I/O rate is achieved 
when the block size has the maximum value. On the 
contrary, minimum latency is achieved by returning each 
descriptor to the host immediately as it is served. 

As already described, the hybrid dynamic driver can 
accept requests of variable data sizes. Fig. 6 presents that the 
maximum performance is achieved for read and write 
requests of large data blocks. In all experiments, a custom 
tool was configured to send synchronous requests of variable 
size data blocks (4K, 512B, 64B etc). 

In order to be able to evaluate the latency of each 
component of the storage system, we measure the latency of 
three different paths (Fig.7). The first path includes the total 
system i.e. hybrid device driver, PCIe, controller and 
DRAM. At the second path the controller and the DRAM 
have been replaced by a loopback. Finally, the third path 
includes only the hybrid device driver and a loopback. The 
measured latency for each path for read and write 
transactions is illustrated in Table 1.  According to these 
measurements, the presented device driver exhibits very low 
latency, comparable with the performance required by high-
end system using the latest PCIe technology. 

 
Paths Read Latency  (usecs) Write Latency  (usecs) 

1 22.15 24.82 
2 7.14 7.14 
3 0.99 0.99 

Tab. 1. Latency of individual paths of the whole system 
 

 
Fig. 6 Experimental results for read and write transactions  

  

 
Fig. 7  Individual paths of  a request  

 
4. Conclusions 
 

In this work, we presented the architecture and 
functionality of a hybrid Linux device driver, which supports 
concurrently variable size data. The device driver demonstrates 
improved performance and can be used in high-end systems. 

______________________________ 
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