

1

A Hybrid Device Driver for Next-Generation Solid-State Drives

 Eleni Bougioukou and Theodore Antonakopoulos.

Department Of Electrical and Computer Engineering, Patras – 26504, Greece.
e-mails: bougioukou@upatras.gr and atonako@upatras.gr

Abstract

Solid state drives (SSDs) are based on non-volatile memories, like NAND Flash, and usually support fixed size data
blocks. The typical data granularity is sector (512 B) or page (4 KB). Next generation SSDs will use new memory
technologies, like Phase Change Materials (PCM) or 3D NAND Flash, with more advanced characteristics, ie. direct
access of large data blocks and simultaneous support of small data chunks. For being able to support new types of
applications, the SSDs must also be able to support various data sizes at their native data structures. In order to fully
explore the capabilities of the underlying storage technology, this functionality requires the use of more advanced device
drivers at the operating system. In this work, we present the architecture of such a hybrid Linux device driver, which
supports concurrently the functionality of block and character device driver.

 __

1. Introduction

SSDs are used extensively in today's embedded
computing systems, either for storage purposes or as low-
cost caching modules. SSDs are the most well-established
technology for replacing magnetic hard disk drives, both in
enterprise and consumer storage systems. This is mainly due
to the low I/O latency that SSDs demonstrate which is in the
order of tens of microseconds as opposed to tens of
milliseconds for HDDS [1]. High performance SSDs are
connected directly to the computing system's internal I/O
architecture using the PCI Express (PCIe) bus, an interface
that utilizes multiple serial Gbps lanes in parallel and
achieves data rates of a few GB/s, depending on the used
PCIe technology [2]. The PCIe functionality is exploited by
using shared memory structures at the host memory for
information exchange between the SSD's internal controller
and the device driver internal logic.

Fig.1 presents a commonly used OS stack, the Linux
kernel I/O stack [3]. The applications at the user-level access
the storage devices through various system calls. The kernel
forwards large data block requests to the virtual filesystem
layer, which uses generic filesystem calls based on
filesystem-specific functions. The filesystem is aware of the
logical layout of data and metadata on the storage medium
and sends read and write requests of fixed-size data blocks
(typical size is 4K, named pages, and minimum size is 512
bytes) to the block layer on behalf of the user applications.
The block layer provides an abstract interface which
conceals the differences between storage devices of different
technologies. User-level applications are also allowed to
directly access the mass storage devices without the
intervention of the filesystem for managing their data. This
path is called “Direct” or “Raw” I/O. Block requests enter a
request queue and finally arrive at the device driver, which is
responsible for exchanging data with the storage device
according to a specific host controller interface [4].

Next generation SSDs will use new memory
technologies, like Phase Change Materials (PCM) or 3D
NAND Flash, with more advanced characteristics, i.e. direct
access of large data blocks and small data chunks. For being

Fig. 1 Linux storage device I/O stack

able to support new types of applications, these SSDs must
also be able to support various data sizes at their native data
structures. In order to fully explore the capabilities of the
underlying storage technology, this functionality requires the
use of more advanced device drivers at the operating system.

In this work, we present the architecture of such a hybrid
Linux device driver. The driver interacts with various kernel
modules (block device drivers, character device drivers etc).
Unlike traditional device drivers, it can accept requests of
various data size i.e. large data blocks and/or small data
chunks. The device driver is responsible for dispatching
these requests to the actual storage device according to their
interface. Information and data exchange is achieved by
using a shared memory space on the main memory of the
host, a set of registers in the PCIe address space and an
interrupt mechanism.

2

2. Hybrid Device Driver

Fig.2 presents the Linux kernel I/O stack for the
proposed hybrid device driver. User applications interact
with any of the known Linux devices (block, character)
sending them I/O requests of various data sizes. These
modules make use of a custom interface exported by the
hybrid device driver and transfer the requests to it. The
hybrid device driver can accept requests from multiple
modules at the same time. These requests are queued and
dispatched to the storage device by using a flexible PCIe
based interface. Finally, the hybrid device driver responds
with the relevant I/O completions to the corresponding
modules. I/O requests/completions are exchanged through a
list of descriptors stored in a circular buffer, which
represents the submission/response queue, as shown in
Fig.3.

The driver is responsible for transforming each request
to a suitable descriptor that will be passed to the storage
device for processing. Each descriptor, stored in the circular
buffer (host main memory), can be accessed by the PCIe
storage device and the host processor. The descriptors are
passed to the PCIe device in blocks of variable size. The
blocks’ size is dynamically adjusted in order to achieve high
data rates, especially when the offered load is high. A block
of descriptors corresponds to a subset of the total number of
descriptors in the list. The offset of the next block to be
processed along with its size are notified to the PCIe device
through registers in the PCIe address space. Then, with a
DMA transaction, the PCIe device transfers the block in its
local memory, where the microprocessor processes the
descriptors and initiates the respective read/write data
transactions. In the mean time, driver continuous processes
requests arriving from the various kernel modules. To ensure
data integrity, access is forbidden to the memory space
allocated to the block of descriptors that is currently being
processed by the storage device. When a block has been
fully processed and the content of its descriptors has been
updated, the PCIe device returns the block to the host
memory and informs the host processor by generating an
interrupt.

Fig.4 provides a detailed description of the functionality
of the hybrid device driver, which consists of three main
functions, namely I/O Requests Handler, New Descriptors
Block Processor and I/O Responses Generator. The I/O
Requests Handler handles all requests received from the
higher layers. The device driver transforms each request into
a suitable descriptor, which is then placed into a shared
memory and eventually is passed to the storage device for
processing. Each descriptor is filled with information about
its owner (host or PCIe device), the activity (command or
response), the type of request (read or write), the physical
address at the host main memory and the data offset in the
PCIe device address space. Each request is placed into a
waiting queue until it is completed.

When the driver receives an interrupt from the PCIe
device that signals the completion of the previous block, the
New Descriptors Block Processor function is activated for
dispatching a new block with descriptors to the PCIe device,
if there are any pending requests. To be able to adapt to
different workloads, the descriptors are passed to the PCIe
device in variable-size blocks. In the special case where a
new descriptor is created when the PCIe device is idle, a
block with a single descriptor is dispatched directly by the
I/O Requests Handler function.

Fig. 2 Linux storage device I/O stack with hybrid device driver

Fig. 3 Hybrid device driver

In this case, the system experiences the minimum possible
latency. Registers at the PCIe address space hold the offset
of the new block in the interface queue along with its size.

The New Descriptors Block Processor function wakes up
the I/O Responses Generator function, which processes the
block with the responses that have just been received by the
PCIe device. This function checks sequentially all
descriptors of the returned block and resets them in the
shared memory, making them available for new transactions.
It also wakes up the original I/O requests and generates I/O
completions to the corresponding kernel devices, preserving
their order.

Fig. 5 presents the synchronization between the host
device driver and the PCIe device. When the device driver
has a new block of descriptors to send to the storage device,
it notifies the device and provides the offset of the next
block to be processed along with its size through registers in
the PCIe address space. Then the device transfers the block
to its local memory, where the descriptors are processed and
the respective read/write data transactions are initiated.
When the block has been fully serviced and the content of
the descriptors has been updated with the responses, the
PCIe device returns the block to the host memory and
informs the host processor by generating an interrupt.

3

Fig. 4 The hybrid device driver architecture

Other modes of operation are also supported, ie. a descriptor
is returned to the host immediately as the respective
command has been completed or a block is partially
answered using subsets. Then, the device driver processes
the returned block, generates the respective I/O completions
of the original I/O requests and at the same time grants
access to the PCIe device for the next block of descriptors.

The diagram also presents an enhancement of this
interface. In a typical system, sequential block processing
results to loss of processing power, since idle time occurs
between issuing an interrupt and information update of the
next block to be processed. Delays in the interrupt
dispatching by the host, along with OS delays due to context
switching, can lead to exceptionally high idle execution
times despite the fact that the device driver may have
already prepared the subsequent blocks of descriptors in host
memory space. This can lead to performance degradation.
For confronting this, we propose an enhancement to this
interface with a smart forward command mechanism, where
the driver not only sends the current block of descriptors but
also informs the device regarding a few pending descriptors,
independent to the size of the next block. This way, when
the device returns a serviced block of descriptors, it already
has a number of the next descriptors in its local memory and
starts processing them. As a result, the device remains
constantly active and the maximum performance is
achieved.
A major advantage of the proposed device driver structure is
that it supports dynamically adaptable and variable-size
blocks of descriptors. The maximum supported descriptors'
block size is determined by the internal capabilities and
functional characteristics of the PCIe storage device. For that
reason, the proposed device driver specifies dynamically the
size of the next block, according to the currently applied
workload. That means that whenever the PCIe device sends
an interrupt to inform the host of its availability, the New
Descriptors Block Processor function determines the size of
the next block of descriptors, taking into account the number
of pending requests and the status of the PCIe device. It then
dispatches either a maximum size block, leading to
maximum possible I/O throughput, or a block with all
pending requests, minimizing I/O latency.

Fig. 5 Exchange of blocks of descriptors between the host and the PCIe
storage device.

3. Experimental Results

For this work, a complete PCIe storage device prototype
was built using the powerful Xilinx ZC706 development
platform, which is based on the Zynq-7000 SoC architecture.
Zynq-7000 integrates a feature-rich dual-core ARM Cortex-
A9 MPCore processing system and Xilinx programmable
logic in a single device. The ARM CPU is the heart of the
processing system which also includes on-chip memory,
external memory interfaces, and a rich set of I/O peripherals.
The various hardware controllers as well as the processing
system are I/O interconnected via high-bandwidth AMBA
AXI interfaces. The ZC706 board provides a hardware
environment for developing and evaluating designs targeting
the Zynq-7000 Programmable SoC and includes features,
such as DDR3 SODIMM memory component and four-lane
PCIe Gen. 2 interface, that enable building high-
performance embedded systems. Based on this platform, we
were able to build the prototype of a highly reconfigurable
PCIe storage device, which was used to validate the
efficiency of the proposed hybrid device driver and PCIe

4

host controller interface for PCIe storage devices, to
investigate alternative configurations and procedures and to
evaluate the performance of the various components
individually and the whole system as well. Since in this
work we are focusing on the performance of the device
driver and the PCIe interface, instead of the actual chips, the
DDR3 memory of the ZC706 platform was used. This way
the only hardware limitation is the read/write rates of the
DDR3 SODIMM controller.

Each block of descriptors is initially transferred in the
local memory with a DMA PCIe transaction, and then the
microprocessor starts analyzing the descriptors' contents and
executes the commands. Depending on the type of command
(read or write), for each descriptor a different type of DMA
PCIe (Device-to-Host or Host-to-Device) transaction is
initiated. There are two different scenarios. Each descriptor
is answered to the host individually or the whole block with
descriptors is processed and finally answered to the host.

According to the experimental results of Fig. 6 higher
performance is achieved during a read operation. This is due
to the different PCIe procedures regarding the read and write
transactions, as well as variations in the implementation
efficiency of the hardwired PCIe controller of the ZC706
development platform. In the case when descriptor is
answered to the host individually (4K, RPR), the DMA
engine is blocked and cannot be used for the data transfer of
the next command until the previous descriptor has been
successfully transferred to the host memory. So the
performance decreases as the block size is increased. In the
case of answering all the commands as a single block (4K,
RPB) we can see that the maximum I/O rate is achieved
when the block size has the maximum value. On the
contrary, minimum latency is achieved by returning each
descriptor to the host immediately as it is served.

As already described, the hybrid dynamic driver can
accept requests of variable data sizes. Fig. 6 presents that the
maximum performance is achieved for read and write
requests of large data blocks. In all experiments, a custom
tool was configured to send synchronous requests of variable
size data blocks (4K, 512B, 64B etc).

In order to be able to evaluate the latency of each
component of the storage system, we measure the latency of
three different paths (Fig.7). The first path includes the total
system i.e. hybrid device driver, PCIe, controller and
DRAM. At the second path the controller and the DRAM
have been replaced by a loopback. Finally, the third path
includes only the hybrid device driver and a loopback. The
measured latency for each path for read and write
transactions is illustrated in Table 1. According to these
measurements, the presented device driver exhibits very low
latency, comparable with the performance required by high-
end system using the latest PCIe technology.

Paths Read Latency (usecs) Write Latency (usecs)

1 22.15 24.82
2 7.14 7.14
3 0.99 0.99

Tab. 1. Latency of individual paths of the whole system

Fig. 6 Experimental results for read and write transactions

Fig. 7 Individual paths of a request

4. Conclusions

In this work, we presented the architecture and
functionality of a hybrid Linux device driver, which supports
concurrently variable size data. The device driver demonstrates
improved performance and can be used in high-end systems.

References

1. J. Brewer and M.Gill, “Nonvolatile memory technologies with

emphasis on flash: A comprehensive guide to understanding and
using flash memory devices”, Wiley-IEEE Press, 2008.

2. “PCI Express Base Specification, Revision 2.1”, PCI SIG, Tech.
Rep., March 4, 2009

3. D. P. Bovet and M. Cesati, “Understanding the Linux kernel” 3rd
ed. Oreilly & Associates Inc., 2005

4. J. C. A. Rubini and G. Kroah-Hartman, “Linux Device Drivers”
3rd ed. Oreilly & Associates Inc., 2005.

