
Reprint 
 
 
 
 
 
 

 
 
 

Transmission Systems Prototyping based on  
Stateflow/Simulink Models 

 
N. Papandreou, M. Varsamou, and Th. Antonakopoulos 

 
 
 
 
 
 
 
 
 
 
 

The 15th IEEE International Workshop on Rapid System 
Prototyping - RSP 2004 

 
  GENEVA,  SWITZERLAND,  JUNE  2004    

 
 
Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical work. 
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying 
this information are expected to adhere to the terms and constraints invoked by each author's copyright. In 
most cases, these works may not be reposted or mass reproduced without the explicit permission of the 
copyright holder. 
 



Transmission Systems Prototyping based on Stateflow/Simulink Models

Nikolaos Papandreou1, Maria Varsamou2 and Theodore Antonakopoulos2

1Research Academic
Computer Technology Institute - RACTI

61 Riga Feraiou Str., 26100 Patras, Greece
npapandr@cti.gr

2University of Patras
Department of Electrical Engineering

26500 Rio - Patras, Greece
{varsamou, theodore}@loe.ee.upatras.gr

Abstract

In this paper we describe an efficient methodology for
rapid prototyping of data transmission systems based on
Stateflow/Simulink models using a multi-level system devel-
opment and testing approach. Transmission systems incor-
porate multi-domain functions and algorithms, i.e. physical
layer circuits and communication protocol controllers. The
Stateflow/Simulink environment enables the development of
precise simulation models that include signal and protocol
processing units. The proposed prototyping methodology
is based on the progressive translation of high-level model
blocks into hardware/software modules of the prototype ar-
chitecture using custom and/or automated code generation
tools. A custom data exchange and synchronization inter-
face between the Stateflow/Simulink workspace and the cir-
cuit modules enables the integration of the simulation model
and the prototyping platform into a complete functional sys-
tem. The application of the proposed methodology in the
development of an ADSL modem in a custom prototyping
platform is also described.

1. Introduction

The development of data transmission systems requires
an efficient methodology for mapping the system functions
and algorithms into its architectural components. The de-
sign steps should ensure accurate implementation and short
development times. As a first step, an analytical model
needs to be developed that describes the functional system
behavior. Then, a system prototype has to be implemented
and tested in terms of its consistency to the specifications of
the analytical model. Based on the design requirements and
complexity, the system architecture usually combines mul-
tiple hardware and/or software components. In [1], we have
presented a flexible environment for prototyping xDSL sys-
tem components, based on a custom interface that enables

the integration of model blocks and actual circuits in a pro-
totyping platform, where the MATLAB simulation environ-
ment was used for high-level system modeling.

In general, data transmission systems incorporate multi-
domain operations, i.e. physical layer circuits and commu-
nication protocol units. Although the algorithms embedded
in different levels of the functional hierarchy may be inde-
pendent in terms of implementation, the verification of each
unit requires a complete system testing environment, in or-
der to evaluate the implementation under all possible condi-
tions. As the system complexity increases, the development
of such a test-bench becomes a laborious task that leads to
long development and testing times.

On the other hand, the Stateflow/Simulink tools from the
MATLAB simulation environment facilitate the develop-
ment of complex models that include data and signal pro-
cessing functions, as well as protocol state-machine mod-
ules. We can therefore build a complete model of the
data transmission system using custom and ‘off-the-shelf’
library blocks and moreover benefit from the embedded
build-in simulation functions, in order to analyze and eval-
uate new algorithms in the complete system model.

In this paper, extending the work in [1], we describe a
methodology for prototyping a complete data transmission
system using verified Stateflow/Simulnk models of a fully
functional system. The methodology is based on the pro-
gressive mapping of the high-level model blocks into ar-
chitectural blocks of a prototype system. This mapping is
achieved using custom and/or automated code generation
tools. The substituted model blocks are replaced by special
library functions that are responsible for the communication
and synchronization with their circuit/microcode counter-
parts.

Section 2 describes the prototyping methodology and
discusses the designs steps from the analytical model to the
system prototype. In Section 3 we discuss the modeling
environment using the Stateflow and Simulink tools and we
present the integration of the simulation model and the hard-

Proceedings of the 15th IEEE International Workshop on Rapid System Prototyping (RSP’04) 

1074-6005/04 $20.00 © 2004 IEEE 



ware platform. Finally, in Section 4 the application of the
proposed methodology in prototyping an asymmetric digi-
tal subscriber line (ADSL) modem on a custom prototyping
platform is presented in details.

2. The Prototyping Methodology

The proposed prototyping methodology, as it is shown
in Figure 1, is based on a top-down process which deter-
mines how an actual prototype is generated starting from a
high-level simulation model. Initially, the specifications are
defined and all information regarding the design require-
ments, the system’s functionality and complexity are col-
lected. This step also involves the system’s functional de-
composition into circuit components and protocol units, as
well as the definition of the signal and data interfaces be-
tween each component and its environment, according to
the architectural requirements and restrictions of the proto-
type platform.

Based on this information, an analytical model that
describes the system’s functionality is developed using
the MATLAB environment. Using the Stateflow and
Simulink tools and various blocksets, we are able to build a
multi-domain simulation model that combines the complete
dataflow determined by the specifications, along with sig-
nal processing and data transmission algorithms, and also
communication protocol entities based on multiple state-
machine modules. We can therefore build a fully opera-
tional system model and also evaluate standard as well as
custom algorithms. The model’s functionality is verified
and optimized using simulations and an initial estimation
of the implementation’s complexity can be performed. The
high-level simulation environment is used also for generat-
ing a set of testing scenarios in order to evaluate normal as
well as exceptional cases.

After the model design is completed, the next step is to
map the model components into hardware/software mod-
ules in the prototyping platform, based on the design ar-
chitecture. The progressive substitution of the model com-
ponents with circuit/microcode modules can be realized us-
ing automated code generation tools or custom implementa-
tion designs. The MATLAB environment provides special
libraries for automated code generation of standard func-
tions (i.e. FIR/IIR filters, FFT operations etc.) support-
ing selected families of Texas Instruments, Inc., Motorola,
Inc. and Xilinx, Inc., devices. In the simulation model,
the translated model blocks are replaced by special func-
tions that provide communication between the simulation
workspace and the circuit modules in the prototyping plat-
form. In our development environment, this communication
is realized via a PCMCIA-based custom interface that sup-
ports data exchange and synchronization. As a result, the
mixed-level model that consists of simulation model blocks

HW Platform

Custom/Automatic

Code

Generation Tools

System Specifications

Subsystem

HW/SW mapping

Analysis:

     design requirements

     physical restrictions

     data exploration

Implementation

Prototyping:

     evaluation

     verification

     debugging

Design:

     modeling

     simulation

     validation User

function

Stateflow/

Simulink

Implementation

Figure 1. The prototyping methodology.

and circuit modules, is also a complete functional system
model, in which selected functions are executed in the pro-
totyping platform. Moreover, this mixed-level model pro-
vides a complete and analytical testbench for each of the
prototyping modules, since the testing tools and procedures
determined at the verification of the analytical high-level
system, can be reused.

3. Stateflow/Simulink Modeling

The Stateflow/Simulink tools supplied by The Math-
works Inc. enable the development of a complete trans-
mission system model that includes multi-domain design
blocks corresponding to the system’s data-pump functions,
communication protocol units as well as other emulated
modules, e.g. transmission channel.

For the implementation of the protocol procedures as
well as for the supervisory logic controlling the complete
communication system, Stateflow is used. Stateflow is a
graphical design tool for modeling and simulating event-
driven systems, using advanced finite state machines (FSM)
that support representation of both hierarchical and paral-
lel states. These FSMs can also be tightly integrated with
other continuous or discrete-time standard and/or custom
Simulink blocks to form a complex dynamic systems.

In general, the protocol FSMs implement sequential pro-
cedures related to the initialization and management of the
system operation and provide to the data-pump circuits es-
sential control and data information depending on the trans-

Proceedings of the 15th IEEE International Workshop on Rapid System Prototyping (RSP’04) 

1074-6005/04 $20.00 © 2004 IEEE 



Port A

Data Out register

Port B

Data Out register

Task-File Registers

PCMCIA DECODER

CIS

ROM

Configuration

registers

PCMCIA Bus

Peripheral

Device

Data

Address

Control

Arbiter

Priority

control

Address register

Data In register

Data In register

Address register

DPRAM

Left

Port

Right

Port

Port

MUX

Figure 2. Simulation model and hardware platform integration.

mission and reception status. This interaction is described
using a custom interface that is implemented using events
and data. We distinguish the following types:

• Timing and synchronization events, which ensure that
the procedures and state transitions occur precisely as
defined in the protocol specifications.

• Circuit control events, which are related to the initial-
ization and control of the data-pump circuits.

• System signals, which carry the several types of data
and the parameters that the protocol units exchange
with the system peripherals.

On the other hand, Simulink enables the design of so-
phisticated data and signal processing algorithms using
complex build-in or custom functions, so that the complete
data-pump can be modeled and verified. In particular, State-
flow and Simulink provide powerful capabilities for ver-
ification and validation of a model’s behavior, such as a
flexible debugger and support of state-transition animation.
Therefore, it is easy to consider various scenarios and iterate
until the Stateflow diagrams and the simulation results per-
form the desired behavior. Regarding the system’s protocol
FSMs, this development environment enables the validation
of the protocol implementation at a higher level of abstrac-
tion and at the early stages in the development cycle.

3.1. Data exchange and synchronization

Figure 2 presents the data exchange concept between the
simulation model and the hardware platform. As described
in Section 2, this communication is based on the PCMCIA
interface. In the high-level model, the blocks that are trans-
lated into circuit modules in the prototyping platform are
replaced by special functions that utilize a PCMCIA driver,
in order to access the PCMCIA device.

In the prototyping platform a custom FPGA module
performs the interface logic demonstrated in Figure 2.
This custom module provides the necessary circuits for
the PCMCIA initialization and data transactions and for
extending the available I/O memory space. A dual-port
memory (DPRAM) that is accessed by both the simula-
tion workspace and a custom peripheral device contains all
necessary user and control information for the mixed-level
model dataflow. In Figure 2 a case of two distinct ports that
enable two different host applications to access the memory
is presented. A MUX is used in order to decode the address
and data buses. This configuration is useful for debugging
and diagnostic purposes. In such a case a custom applica-
tion collects data from the DPRAM in order to process the
statistics and also provide a graphical representation. The
two-port approach resolves invalid data read and write oper-
ations in concurrent memory access, due to the multi-cycle
PCMCIA transaction.

This data-exchange concept enables the integration of
the simulation model and the prototyping platform into
a functional model, in which selected functions are exe-
cuted in hardware. Stateflow and Simulink blocks of the
high-level model may interact with their hardware/software
counterparts in the prototyping platform, using the library
functions that utilize the PCMCIA driver.

3.2. Embedded microcode development

The blocks of the system model are translated into cir-
cuits in the hardware platform using either automated code
generation tools or custom user designs. The Mathworks
provides support for automated code generation of the
Stateflow diagrams and the Simulink blocks through State-
flow Coder and Real-Time Workshop. Selected families of
Texas Instruments, Inc., Motorola, Inc. and Xilinx, Inc.,
devices are supported. The code produced is not highly op-

Proceedings of the 15th IEEE International Workshop on Rapid System Prototyping (RSP’04) 

1074-6005/04 $20.00 © 2004 IEEE 



Network
End

Encoder Modulator
Transmission

Circuits

Channel / Data Link

Management Unit Signaling Protocol

Decoder
Reception

Circuits
Demodulator

Control/Data
Interface

FEC
dedicated IP core

Arbiter and Sync
Unit

Fast custom circuit
designs

CoreConnect Bus

User
EndManagement UnitSignaling Protocol

Embedded System
Microcontroller

floating point
DSP

Interface
Driver

Dataflow

Stateflow/Simulink
ADSL model

programmable logic

digital signal
processor

programmable logic

Host Interface Module

Figure 3. The modular environment for prototyping an ADSL communication system.

timized, however it is effective and can be embedded in the
target platforms.

In demanding application, where custom design are pre-
ferred or new implementations are examined, the model
blocks can be developed by the user using low-level pro-
gramming languages (i.e assembly, C/C++) or hardware de-
scription languages (i.e VHDL).

4. The ADSL Modem Prototyping

In this section we present how the proposed methodol-
ogy was used for prototyping an asymmetric digital sub-
scriber line (ADSL) [2] data transmission system.

The ADSL systems perform multicarrier transmission
over the local loop and support synchronous (STM) or asyn-
chronous (ATM) data traffic. The ADSL data-pump incor-
porates advanced signal processing and coding techniques,
i.e. Reed Solomon forward error correction (FEC), FFT-
based modulation/demodulation, 4-D Trellis coding etc.
The signal and data processing functions embedded in the
ADSL data-pump are defined in Recommendation G.992.1
[3]. The establishment of the communication link between
two far-end ADSL transceivers determines a specific set
of initialization procedures including activation, transceiver
training, channel analysis and parameters exchange. These
procedures are accomplished using handshaking sequences

between the two modems and comprise the signaling proto-
col for the asymmetric DSL devices. The detailed state se-
quences and transitions for the ADSL protocol are defined
in Recommendations G.992.1 [3] and G.994.1 [4].

4.1. The prototyping environment

Figure 3 presents the prototyping environment for the
ADSL system. Using standard and custom blocks of the
Simulink and Stateflow tools, we developed a simulation
system that models an end-to-end ADSL communication
link. As described in Section 3, the data-pump functions
were developed using build-in and/or user-defined algo-
rithms embedded in Simulink blocks, while the subsystem’s
operation is controlled by state-machine modules developed
using the Stateflow tool. The signaling protocol is also de-
veloped using hierarchical state-machines that control the
transmission states of the transceiver models.

In order to build and verify the functionality of the sim-
ulation model, an appropriate interface is specified that de-
scribes the interaction between the signaling protocol state-
machines and the signal processing units of the data-pump.
This interface is implemented in the form of signals. We
distinguish the following signal types:

• Timing and synchronization signals, which ensure that
the procedures and state transitions occur precisely as
defined in [3].

Proceedings of the 15th IEEE International Workshop on Rapid System Prototyping (RSP’04) 

1074-6005/04 $20.00 © 2004 IEEE 



• Protocol status signals, which carry information about
the protocol status and the initialization phases.

• Data-pump control signals, which are related to the
initialization and control of the modem’s signal pro-
cessing circuits.

• ADSL signals and messages, which carry the several
types of signals and the parameters that the modems
exchange.

After the ADSL high-level model was verified and op-
timized using simulations, we used the top-down process
presented in Figure 1, in order to map the model blocks into
components of our prototype architecture and progressively
build our system using the mixed-level design and test envi-
ronment that consists of high-level model blocks and low-
level circuit units. The integration between the simulation
workspace and the hardware/software modules of the pro-
totyping platform was realized using the interface described
in Section 3.1.

4.2. Hardware architecture

In the current version, the prototyping platform is based
on reprogrammable hardware and a floating-point DSP pro-
cessor. In particular we use two Virtex-II FPGA devices
with a total of 2 Million gates and a TMS320C6711 proces-
sor with 900 MFLOPS processing power.

Figure 3 presents the architecture of our prototype ADSL
system. The embedded processor used in our implemen-
tation is the soft IP MicroBlaze core [5]. The hardware
architecture is based on the CoreConnect bus [6], where
the MicroBlaze is the bus master and all other peripher-
als are operating as On-chip Peripheral Bus (OPB) slave
devices. The IBM’s industry-standard OPB [6] is a 32-bit
wide multi-master bus that is ideal for connecting custom
and user-defined peripherals to the MicroBlaze processor
core. This architecture provides the flexibility to develop a
modular design and explore several configurations. More-
over this architecture satisfies the requirements of our ap-
plication. Modern DSL systems are developed using pro-
grammable digital signal processing (DSP) platforms [7].
In particular, the functions embedded in the data-pump are
implemented in high performance DSP cores or dedicated
hardware. In Figure 3 the 6711 DSP is responsible for ex-
ecuting the data-pump functions, while dedicated hardware
modules are used for the demanding forward error correc-
tion (FEC) encoding and decoding circuits and other custom
circuits that require a speed-optimized implementation (i.e.
interleaver/deinterleaver circuits, CRC check-sum engines).

Figure 3 shows the mapping of the simulation model
blocks into the components of the prototype architecture.

The protocol state-machines along with the modem’s man-
agement logic are assigned to the MicroBlaze system con-
troller, that supervises the modem’s operation. The data
and signal processing model units are mapped into soft-
ware modules of the 6711 DSP or dedicated hardware cir-
cuits. The data exchange between the computer that hosts
the simulation environment and the hardware platform is
performed via the interface logic described in Section 3.1.
The DPRAM interface module is implemented as a standard
OPB slave peripheral.

The embedded dual port memory (see Figure 2) provides
the storage area of data and control information exchanged
between the simulation environment and the hardware plat-
form, as well as a common-access memory space for the
system components. In fact, the DPRAM provides the phys-
ical interface between the circuit modules translated from
model blocks and their environment.

In Figure 4 we describe the general concept of the in-
tercommunication between the simulation environment and
the translated blocks of our prototype. Each system module
is associated with a specific region in the DPRAM, which
contains the interface signals between that module and its
environment. In general, we distinguish the following inter-
face signals:

• Control signals region, which contains control infor-
mation and data for the configuration of the system
modules and the initialization of the communication
between the modules and the simulation environment.

• Status signals region, which contains the status infor-
mation of the system modules. This information is
mainly used for synchronization of the dataflow be-
tween the simulation model and the prototyping plat-
form, however it can be utilized for the debugging of
the subsystem’s functionality.

• Data in/out signals region, which contains the data
provided to or generated from the corresponding sys-
tem module and participate in the modem’s dataflow.

Each discrete memory region is in fact the dedicated
memory space of the corresponding peripheral of our pro-
totype architecture, and therefore can be accessed by other
system modules as the prototype integration proceeds. Fig-
ure 4 shows an example of the intercommunication between
the analytical simulation model and three system compo-
nents: the signaling protocol module executed in the system
microcontroller, a software module implemented in the DSP
processor and a hardware module implemented as dedicated
RTL code. All modules consist of distinct components in
the prototype architecture and communicate with the simu-
lation model and each other over the OPB bus and their in-
dividual memory space. Although the entire memory space

Proceedings of the 15th IEEE International Workshop on Rapid System Prototyping (RSP’04) 

1074-6005/04 $20.00 © 2004 IEEE 



GPIO
peripheral

Serial
port MicroBlaze

processor
PCMCIA driver

DPRAM

Circuit module-1

Control Signals

Status Signals

Data In/Out Signals

Circuit module-2

Control Signals

Status Signals

Data In/Out Signals

Signaling SM module

Control Signals

Status Signals

Data In/Out Signals

Transmit Circuit-1
Hardware
Module

Transmit Circuit-2
Software
Module

Signaling
Protocol

State Machine
Module

Dedicated
hardware
module

GPIO

peripheral
OPBus

Memory
interface

logic

Host interface

6711 DSP
processor

MATLAB
Simulation and

Testing
Environment

Channel

Emulator

PHY - 2
Circuit

PHY - 1
Circuit

WorkspaceProtocol Unit

Prototyping platform

Figure 4. The intercommunication DPRAM organization.

behaves as a single memory module at the PCMCIA inter-
face, it can be implemented as separate memories over the
OPB bus according to the design complexity as the system
is progressively build. We also observe that each module
may include a general purpose peripheral module (i.e. I/O
signals, serial port etc.) for internal testing and diagnostic
purposes.

The mixed-level model that consists of the simulation
blocks and the modules in the prototyping platform is a
complete testing environment for each hardware compo-
nent, since we can evaluate the functionality of each imple-
mentation, while the mixed-level model executes exhaus-
tive testing of the ADSL specifications. After the verifica-
tion of each component, we gradually extended our system
by adding other hardware modules of the complete ADSL
data-pump, either as standard OPB peripherals, or as stand-
alone devices.

5. Conclusions

In this paper we have presented an efficient method-
ology for prototyping data communication systems using
multi-domain Stateflow/Simulink models. We have pre-
sented the procedure for integrating a high-level simulation
model with a hardware development platform and we have
described how the analytical model is mapped and progres-
sively translated into the components of the prototype ar-
chitecture. The main advantage of the proposed approach
it that the mixed-level system model provides a complete
testing environment for each prototype module and enables

the evaluation of each implementation in normal as well as
corner cases of the system’s operation. The implementation
and testing steps provide a strong flexibility in the design
process.

6. Acknowledgments

This work was partially supported by the “Karatheo-
doris” R&D program of the University of Patras and Project
00BE33 entitled “Digital Subscriber Lines Technology” of
the Greek Ministry of Industry.

References

[1] N. Papandreou, M.Varsamou, and T. Antonakopoulos, “xDSL
Systems Prototyping using a Flexible Emulation Environ-
ment,” 14th IEEE International Workshop on Rapid System
Prototyping - RSP’2003, June 2003, pp. 194-200.

[2] T. Starr, J. M. Cioffi, and P. J. Silverman, Understanding Dig-
ital Subscriber Line Technology. Upper Saddle River, NJ:
Prentice-Hall, 1999.

[3] ITU, “Asymmetrical Digital Subscriber Line (ADSL)
Transceivers,” ITU - G.992.1, July 1999.

[4] ITU, “Handshake Procedures for Digital Subscriber Line
(DSL) Transceivers,” ITU - G.994.1, March 1999.

[5] Xilinx Inc., MicroBlaze Hardware Reference Guide, Jan.
2002.

[6] IBM Inc., On-Chip Peripheral Bus: Architecture Specifica-
tions, ver 2.1, Apr. 2001.

[7] B. R. Wiese and J. S. Chow, “Programmable Implementations
of xDSL Transceiver Systems,” IEEE Commun. Mag., vol. 50,
pp. 114–119, May 2000.

Proceedings of the 15th IEEE International Workshop on Rapid System Prototyping (RSP’04) 

1074-6005/04 $20.00 © 2004 IEEE 


	Cover_Format_Conference.pdf
	Reprint


	footer1: 


