
Reprint

Run-time Optimized Reconfiguration using Instruction
Forecasting

 M. Iliopoulos and T. Antonakopoulos

The 11th International Conference on Field Programmable
Logic and Applications – FPL 2001

 BELFAST, NORTHERN IRELAND, AUGUST 2001

Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons
copying this information are expected to adhere to the terms and constraints invoked by each author's
copyright. In most cases, these works may not be reposted or mass reproduced without the explicit
permission of the copyright holder.

G. Brebner and R. Woods (Eds.): FPL 2001, LNCS 2147, pp. 286-295, 2001.
 Springer-Verlag Berlin Heidelberg 2001

Run-Time Optimized Reconfiguration Using
Instruction Forecasting

Marios Iliopoulos and Theodore Antonakopoulos

Computers Technology Institute (CTI), Riga Fereou 61, 26221 Patras, Greece
Department of Electrical Engineering and Computers Technology,

University of Patras, 26500 Patras Greece
Tel: +30-61-997346, e-mail: antonako@ee.upatras.gr

Abstract. The extensive use of reconfigurable computing devices has imposed
a new category of processors, the dynamic instruction set processors (DISPs)
that customize their instruction sets dynamically to the application needs. One
of the major drawbacks of DISPs is the reconfiguration time needed to alter the
instruction set, which is directly added to the program execution time
discouraging the use of DISPs especially for time critical processing
applications. This paper introduces a methodology for optimizing
reconfiguration time through instruction forecasting and presents the results
obtained when applying this method to Medium Access processing systems that
execute time critical network tasks.

1. Introduction

Dynamic Instruction Set Processors (DISPs) can solve the usual trade-off between
performance and flexibility by tailoring their instruction sets to application needs.
Runtime reconfiguration allows DISPs to implement an arbitrary long and complex
instruction set by loading instructions on demand.

There is a major drawback in using Run-Time Reconfiguration (RTR). The long
reconfiguration time of current devices is in some cases unacceptable, especially
when time critical tasks are executed, thus there has been extensive research on
methods for reducing the reconfiguration time and to expand the use of DISP systems.

There are two approaches to the problem of RTR. The first approach is related to
changes in FPGA structure that can lead to reduction of configuration time, such as
configuration bandwidth increase, use of partial reconfiguration or use of multiple
contexts inside the FPGA [1]�[5]. The second approach is related to time optimization
techniques in DISPs independently of FPGA structures, such as, exploiting temporal
locality, compressing the configuration bit streams or partitioning the instructions into
dynamic and static using code analysis [6]�[8].

The technique that directly reduces the reconfiguration time is the increase of
configuration bandwidth. The time needed to configure a portion of reconfigurable

logic is given by conf
LT b
r

= + , where, L is the amount of data required for

configuration, r is the configuration bandwidth and b is a system specific

 Run-Time Optimized Reconfiguration Using Instruction Forecasting 287

configuration overhead [1]. Eventually, if we increase the configuration bandwidth
the configuration time is decreased. The same effect is achieved by reducing the
configuration data needed to reconfigure a portion of logic. Several devices (such as
Xilinx Virtex family [2] and Atmel�s AT40K family [3]) support partial
reconfiguration of their resources.

The multiple context [4] or time-multiplexed FPGAs [5] are based on the idea of
replicating the configuration memory within the reconfigurable device. According to
this approach the multiple configurations can be stored in different internal memory
planes and be selected by a global context select signal.

A general optimization technique that targets reconfiguration optimization in
DISPs and is independent to the FPGA structure, is the exploitation of temporal
locality [6]. According to this technique, the instructions are cached inside the DISP
like in memory caches and are replaced only when there is a cache miss, otherwise
the cached instruction is executed without requiring reconfiguration. Instruction
caching exploits the temporal locality of instructions used in program execution. This
technique is extended in [7] by partitioning the instructions into dynamic and static
using code analysis, in order to achieve application specific RTR optimization.
Finally, as proposed in [8], reconfiguration overhead can be reduced by applying
configuration compression and thus reduce the amount of data required to reconfigure
the device.

This paper proposes a new methodology for reducing the reconfiguration overhead
by exploiting code analysis in DISP systems that use instruction caching, in order to
pre-fetch instructions that are most likely to be used shortly. Section 2 introduces the
problem of configuration bandwidth utilization in DISP processors and the basic idea
of the proposed solution. Section 3 describes code analysis methodology used to
extract the information needed for instruction forecasting. Section 4 outlines the
scheduler implementation that exploits the instruction forecasting information while
Section 5 demonstrates the experimental results obtained when applying the
methodology to a MAC processing emulation system.

2. The Problem of Configuration Bandwidth Utilization

In DISP systems that use caching of instructions, the reconfiguration process is
initiated each time a new instruction that has to be executed, is not contained in the
cache, i.e. when there is a cache-miss. Observing the configuration bus usage in DISP
systems with caching, we noticed that when there is a cache-miss, the instruction
scheduler initiates a reconfiguration process that loads the missed instruction into the
reconfigurable logic. When this process finishes, the scheduler remains in idle state
until a new instruction miss occurs. This is illustrated in Figure 1a.

The methodology presented in this paper is based on the exploitation of the idle
states of the scheduler in order to transfer an instruction that will most likely be used
in the future into the reconfigurable logic (Figure 1b). This instruction is called
forecast instruction. This method decreases the possibility of a potential cache miss,
since an instruction that has to be executed is more likely to be into the cache due to
forecasting. Although, the instruction forecasting can dramatically reduce the cache-

288 Marios Iliopoulos and Theodore Antonakopoulos

miss effect, it does not eliminate it, due to the fact that instruction forecasting is based
on statistical analysis and occurrence probabilities.

As it is shown in Figure 1, the idea of instruction forecasting optimization is based
on the fact that forecasted instructions do not stop normal program execution since
there is no actual cache-miss that would put the DISP processor in a hold state. Based
on this idea we introduced the code analysis methodology that produces the
information for instructions forecasting using a parametric forecast window.

Configuration Idle ConfigurationIdle

HOLD

Config.
Addr. &

Data

Cache-
miss

Cache-
miss

Configuration IdleIdle

HOLD

Config.
Addr. &

Data

Cache-
miss

Saved
Cache-miss

Hidden
Configuratio

n
Idle

Instruction
Forecasting

(a)

(b)

Fig. 1. (a) Normal Instruction fetching, (b) Instruction fetching with forecasting

3. Code Analysis Method for Parametric Forecasting Window

The methodology for producing the forecast instruction information is based on code
analysis. More specifically, the code that has to be executed in the DISP is compiled
in order to produce the assembly program. The program is parsed in order to identify
the execution paths based on the branches met in the code. The parser produces
dataflow graphs such as the one illustrated in Figure 2. In this DFG there are two
points of interest:
• Point A, which represents the instruction that has to be executed by the DISP

processor at a specific time.
• Point B, which is the instruction that is going to be executed after n instructions,

where n is the length of the forecasting window. Point B is not unique and
depends on the number of branches that exist between point A and point B.

 Run-Time Optimized Reconfiguration Using Instruction Forecasting 289

Instr1

Instr2
Branch

Instr3 Instr6
Branch

Instr7
Instr9

BranchInstr4

Point A

a 1-a

b 1-b

(b)

Instr11Instr8Instr5 Instr10

Instr1

Instr2
Branch

Instr3
Instr6

Branch

Instr7
Instr9

BranchInstr4

Instr11Instr8Instr5 Instr10

Window 1

Window 2

Window 3

Point A

(a)

Fig. 2. Dataflow graphs (a) forecasting windows, (b) path probabilities

The instruction-forecasting algorithm uses the address space of the compiled
program and initiates the forecasting field for each address. Then for each address, the
algorithm checks for all possible instructions in the window with length n . For
example, in Figure 2a the possible instructions in the window with length 3, starting
from point A, are Instr4, Instr7 and Instr9.

290 Marios Iliopoulos and Theodore Antonakopoulos

In general, the probability for an instruction being executed after n instructions is
the product of the probabilities of the intermediate paths. For example, in Figure 2b
the forecasting for Instr1 and window length 3 is: Instr5 with probability a , Instr7
with probability ()1 a b− and Instr9 with probability ()()1 1a b− − . This probability
depends on several factors such as the length of the window, the intermediate
branches, and the external events that could affect the execution paths.

More specifically, the window size affects the maximum number of intermediate
branches that are interleaved between point A (current time) and point B (future
time). A longer-range window is more likely to achieve worse forecasting than a
shorter-range window. Another factor that affects the probability of a future
instruction is the kind of intermediate branches. For example, if a branch is part of a
loop that is executed N times then the probability to follow the return path in the
loop is N times higher than the probability to follow the path that leads outside the
loop. Finally, the most important factor is the interaction of the processor with
external events. In order to forecast branches that depend on external events we can
emulate the system�s dynamicbehavior. The results of emulation can be combined
with static analysis to produce the information for forecast instructions as illustrated
in Figure 3.

The outcome of the optimization method is the reconfiguration bitmaps and the
reconfiguration timing information that contains the forecasting instructions used as
input by the scheduler. The forecasting information is a table of addresses, each of
them containing two fields, the current instruction field that is the instruction which is
executed now, and the forecast instruction field, which is the instruction that is going
to be executed after n instructions.

There are two approaches for integrating the forecasting information into the
instruction set. The first approach embodies this information into the opcode of each
instruction in order to be decoded from the instruction-decoding unit of the processor.
The second approach extends the memory bus in order to directly pass forecasting
instruction information to the scheduler. The second approach has the disadvantage of
wasting memory for storing forecast instruction information, but since this approach
is simpler, it is the one used in the presented system.

4. Scheduler Implementation for Instruction Forecasting

The RTR optimization method is implemented by a scheduler that exploits the
forecast information produced by the code analysis. When a scheduler is used in
common DISP systems with instruction caching, it executes the following procedures:
1. It checks the opcode of the decoded instruction and if the instruction is static

or if it is already in the reconfigurable array (by checking the instruction
cache), then the scheduler remains in idle state waiting for the next decoded
opcode, otherwise proceeds to the next step.

2. If the instruction is not contained in the reconfigurable array, the scheduler
stops normal execution flow by issuing a HOLD signal to the processor. Then
the scheduler checks if there are available reconfigurable resources. If there are

 Run-Time Optimized Reconfiguration Using Instruction Forecasting 291

available resources, it loads the instruction and returns to idle state, otherwise
it replaces an existing instruction according to a replacement algorithm (such
as random, First-in-First-out, Least Recently Used - LRU). Loading a new
instruction or replacing an existing one causes changes into the cache and
modifies the system resources. When reconfiguration is completed, the
scheduler deasserts the HOLD signal allowing normal code execution.

Static analysis of
Code

Identify execution
paths

Assembly Code

Network Events
Emulation

System Model

RTR Optimization
Algorithm

Reconfiguration
Bitmaps (memory)

Reconfiguration
Timing (Scheduler)

Fig. 3. Optimization of reconfiguration time

In order to exploit the forecast instruction information, the scheduler state machine
has to be changed to the one shown in Figure 4. The new state machine uses the
scheduler idle states for executing the following steps:
1. Each time the scheduler is in the idle state, which means that either the

executed instruction is in the cache or is a static instruction, it looks for the
next forecast instruction that corresponds to the current execution position. If
the forecast instruction is in the instruction cache, then the scheduler
rearranges the cache so that the instruction would not be replaced until it is
executed (after n instructions). The rearrangement is done by using a LRU-
like algorithm, i.e. the instruction that corresponds to the cache-hit position
comes to the first position of the instruction queue.

2. If the forecast instruction is not in the cache, then the scheduler initiates a
fetching cycle of the instruction by replacing the instruction that is at the end
of the instruction queue. The whole process is transparent to the processor
execution flow until there is a cache miss. In that case, the processor is in hold
state until the forecast instruction is loaded.

292 Marios Iliopoulos and Theodore Antonakopoulos

Opcode

Static
Instruction?

Load the instruction
in the available logic

Fits in
Reconfigurable

logic?

Exists
in Instruction

Cache?

Put processor
in HOLD state

Replace an existing
instruction

Release
processor from

HOLD state

W ait new opcode

No

No

No Yes

Exists
in Instruction

Cache?

Yes

Yes

No

Yes

No

Is the
configuration bus

occupied

Yes

No

W ait until forecast
instruction is
downloaded

Is there
any forecast

Instr.?

Put processor
in HOLD state

Yes

Reorder the queue so
that the instruction

comes first
(LRU-like)

Fig. 4. State diagram of the scheduler that exploits forecast instructions

5. Experimental Results

In order to evaluate the effectiveness of the method we emulated a dynamic version of
the ARM processor and we constructed an emulation platform, which is illustrated in
Figure 5. The dynamic ARM processor contains the same set of instructions with the
static version but part of the instruction set is executed dynamically using the
scheduler described in the previous section. Two MAC processing systems were
tested using the emulation platform, the IEEE802.11 [9] and the IEEE802.3 MAC

 Run-Time Optimized Reconfiguration Using Instruction Forecasting 293

protocol [10] with the addition of the scheduler and a monitor module, which traced
exchanged signals and recorded statistical information. The monitor module
recognized instructions and different scheduler modes (cache-miss, cache-hit, static-
instruction) and gathered statistical information for the size and the content of the
instruction cache, the forecast instruction performance, like the number of cache-
misses, the number of cycles that the processor is in HOLD state, etc.

The emulation platform contained also all the procedures that emulated real
network events. For example, there were procedures for transmitting and receiving
network packets for both protocols, procedures for host transaction emulation, like
uploading or downloading data from the packet memory etc. Finally, there was the
MAC implementation software, which was executed by the ARM and was used for
the forecast instructions analysis.

Dynamic
M AC M odel

Conventional
 MAC Processor

Scheduler

ARM
Processor

Configuration
Memory

HOLD

Internal Memory

Packet Memory

Control

Monitor module

Host Interface units
(PCMCIA, USB)

MAC processing
Functions

Statistics

Network
Events

Host
transactions

Fig. 5. Emulation platform for Dynamic MAC processing systems

294 Marios Iliopoulos and Theodore Antonakopoulos

The dynamic version of the MAC processing program was executed for 11
different partitions of dynamic and static instructions keeping the system resources
constant (i.e. Half of the cache resources were used to implement the instructions
statically). Five (5) different ranges for window forecasting were used. Each range
was calculated in instruction downloading time units. The instruction downloading
ranged from 2 to 12 time units, while the window sizes ranged from 8 to 20. Figure 6
shows the experimental results for different forecasting windows along with simple
(no instruction forecasting) FIFO and LRU replacement algorithms. We observe that
forecasting algorithm achieved an improvement in the range of 30 to 50% in cache-
misses (and thus reconfiguration time). All forecasting window sizes have better
performance than the simple algorithms. In our experiments the best forecasting
window is equal to 16.

100

150

200

250

300

350

400

450

500

R
U

N
0

R
U

N
1

R
U

N
2

R
U

N
3

R
U

N
4

R
U

N
5

R
U

N
6

R
U

N
7

R
U

N
8

R
U

N
9

R
U

N
10

FIFO
LRU
WINDOW 20
WINDOW 16
WINDOW 8

Fig. 6. Cache-misses for FIFO, LRU and window forecasting algorithm

6. Conclusions

In this paper we introduced a new method that decreases the reconfiguration time in
DISP systems with instruction caching independently of the FPGA architecture or
instruction swap technology and uses instruction forecasting. We demonstrated the
results obtained in a MAC processing emulation platform by analyzing the
IEEE802.11 and IEEE802.3 MAC protocols. The new system flow that contains the
method described in this paper uses the following steps: The assembly program
generated by the compiler is analyzed by an optimizer in order to generate an
instruction mix of dynamic and static instructions. The instruction mix is further
analyzed by the reconfiguration optimizer to produce an extended instruction set that
contains forecast instruction information for the scheduler.

 Run-Time Optimized Reconfiguration Using Instruction Forecasting 295

References

1. Michael J. Wirthlin, Improving Functional Density Through Run-Time Circuit
Reconfiguration, Ph.D. thesis, 1997.

2. Xilinx, Application Note: Virtex Series Configuration Architecture User Guide, Virtex
Series, XAPP151, v1.3, February 2000.

3. Atmel, AT40K05/10/20/40 FPGAs with DSP Optimized Core Cell and Distributed
FreeRam, Datasheet, rev. 0896B-01/99, January 1999.

4. E. Tau, I. Eslick, D. Chen, J. Brown, and A. DeHon. A first generation DPGA
implementation, Proceedings of the Third Canadian Workshop on Field-Programmable
Devices, pages 138-143, May 1995.

5. Steve Trimberger, Dean Carberry, Anders Johnson, and Jennifer Wong. A time-
multiplexed FPGA. In J. Arnold and K. L. Pocek, editors, Proceedings of the 5th IEEE
Symposium on FPGAs for Custom Computing Machines, pages 22-28, Napa, CA, April
1997.

6. M.J. Wirthlin, and B.L. Hutchings, A Dynamic Instruction Set Computer, Proceedings of
the 3rd IEEE Symposium on FPGAs for Custom Computing Machines (FCCM), 1995, pp.
99-107.

7. Iliopoulos, M., Antonakopoulos, T., Optimized Reconfigurable MAC Processor
Architecture, IEEE International Conference on Electronics and Computer Systems
(ICECS), Malta, 2001.

8. S. Hauck, Z. Li, and E. J. Schwabe. Configuration Compression for the Xilinx XC6200
FPGA, Proceedings of the 6th IEEE Symposium on FPGAs for Custom Computing
Machines (FCCM), April 1998.

9. Iliopoulos, M., Antonakopoulos, T., A Methodology of Implementing Medium Access
Protocols Using a General Parameterized Architecture, 11th IEEE International
Workshop on Rapid System Prototyping (RSP), June 2000, Paris, France

10. Iliopoulos, M., Antonakopoulos, T., Reconfigurable Network Processors based on Field
Programmable System Level Integrated Circuits, 10th International Conference on Field
Programmable Logic and Applications (FPL), Villach, Austria, August 2000.

	1.	Introduction
	2.	The Problem of Configuration Bandwidth Utilization
	3.	Code Analysis Method for Parametric Forecasting Window
	4.	Scheduler Implementation for Instruction Forecasting
	5. 	Experimental Results
	6.	Conclusions
	References
	2001_FPL_OptimizedReconfiguration1.pdf
	Reprint
	M. Iliopoulos and T. Antonakopoulos

