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Abstract

This paper presents a real-time entropy compres-
sion/decompression unit for disparity map information used
in 3D teleconferencing systems. The disparity map data
Jorm a constant bit rate data stream which has to be trans-
mitted through an ATM channel supporting lower data
rates. The selection of the proper compression algorithm
must be based on the durability of the regenerated data
fo various types of errors, generated mainly due to the
limited available bandwidth. Initially we present the dis-
parity map formats, why they should be coded losslessly,
some well-known entropy algorithms and their performance
in terms of compression rate and throughput. All algo-
rithms are evaluated according to the application require-
ments which are: good compression rate, real-time imple-
mentability and fast convergence during the compression
initialization phase. Feasible implementations are proposed
Jfor the algorithms selected using commercially available
digital signal processors (DSPs) and field programmable
gate arrays (FPGAs).

1. Introduction

The new generation of 3D telepresence videoconferenc-
ing systems aim to provide the user with an enhanced il-
lusion of true contact. Various methods on achieving this
with the use of stereoscopic cameras have highlighted the
need for disparity estimation and image interpolation. In
this work, we consider the case where disparity estimation
is carried out on the transmitter side and interpolation is car-
ried out on the receiver side. Thus for 3D image recreation,
the transmission procedure becomes more complex, since
a disparity stream must also be transmitted with the im-
age data streams, but the most complex part of the system,
the receiver, is greatly simplified. With the transmission
of coded disparity map information with compressed video
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camera data, remote teleconferencing applications can be
made feasible with reduced data rates. An example of such
a system is currently being developed in the framework of
the ACTS project 092 PANORAMA'! [1] and is shown in
Fig. 1.

In real-time applications like video and audio services,
lossy algorithms have been chosen due to their superior
compression rate. Such algorithms control their output bi-
trate by increasing or decreasing the compression rate. They
take advantage of the redundancy that exists in video and
audio raw data and of various characteristics of the human
vision (video) or hearing (audio) to decrease the amount of
information that needs to be transmitted. Unfortunately in
the case of disparity map coding these algorithms cannot
be used since such lossy coding of the disparity map would
lead to large synthesis errors and even an incorrect three-
dimensional impression [8]. For our application, we will
consider redundancy reduction with the application of en-
tropy coding algorithms. They achieve a smaller compres-
sion rate but the original stream can be recreated without er-
rors. Unfortunately such algorithms have the disadvantage
that the bitrate produced varies according to the compress-
ibility of the input data stream. When this bitrate exceeds
the capacity of the communications channel lossless coding
is not possible. In the absence of extensive studies on the
effect of disparity map errors on image quality, we chose
a simple method of controlled data loss (CDL) during de-
creased compression efficiency. In CDL, the compression
ratio is evaluated on a frame-to-frame basis. The output
channel is divided into fixed-sized slots. Each compressed
frame is allocated a time slot. If a compressed frame size
is larger than its allocated slot, transmission continues into
the next slot while the following frame is not transmitted.
At the decoder side, a rejected frame is replaced by the pre-
viously transmitted frame.

! This work has been performed in the framework of the European Com-
mission ACTS Project AC092 PANORAMA -"Package for New Opera-
tional Autostereoscopic Multiview Systems and Applications™
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In this paper we present the architecture and functional-
ity of a lossless compression unit for disparity data and its
decompression unit that is a part of the transmission chain
of a 3D teleconferencing system. First we present a few
characteristics of the data which must be coded; in our case
the disparity map information from the disparity estimator
unit. Secondly we evaluate the performance of various loss-
less compression algorithms in terms of compression ratio
and complexity to determine their feasibility in terms of
implementation with commercially available digital signal
processors and existing re-programmable logic technolo-
gies. Both ad-hoc techniques and commercially available
solutions were investigated. We also examine the perfor-
mance of the various compression algorithms when CDL is
used.

2. System Overview

The main aim of the lossless compression unit is to re-
duce the bitrate required to transmit the disparity map data
through an ATM network. The disparity data are encapsu-
lated in a CCIR recommendation 601/656 format with a to-
tal rate equal to 27 Mbytes/sec but the raw data rate is 5.184
Mbps, as it is explained in the next paragraph. The CBR
channel allocated for the disparity data has a fixed capacity
of between 2 Mbps and 4 Mbps, which is determined dur-
ing the call set-up. Lossless compression is used due to the
nature of the data while the introduced delay per frame will
also be constant. Thus, if the corresponding video codecs
also introduce constant delay, synchronization is possible
at the ATM multiplexer. The decompression unit accepts
the coded disparity bitstream and regenerates the original
disparity map bitstream. The intermediate view calculation
unit uses as input two video channels and the disparity map
information. It contains a synchronization unit which syn-
chronizes the three channels. The timing difference must
be smaller than one frame. In order to keep synchroniza-
tion the introduced delay must also be kept constant. The
disparity map is generated by the disparity estimator which
worked on two video bit-streams [5]. It produces two uni-
directional vector maps for each video frame (left-to-right
image disparity map and right-to-left disparity map).

In the PANORAMA project the disparity vectors are
transmitted in the form of a chain map [5], {4]. The dispar-
ity estimator generates two unidirectional vector fields. The
vector fields are sparse fields i.e. are subsampled four times
in the vertical direction. Disparity information derived from
CCIR-601 video was transmitted every fourth scanline. The
transformation is described in [4] but in general, when tele-
conferencing scenes are involved, vectors from both maps
are used according to their position. Vectors from the right-
to-left map are used for the left part of the image while vec-
tors from the left-to-right map are used for the right part.
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Table 1. Entropy of various typical teleconfer-
encing sequences (bits/symbol)

MAN MAN WOMAN

4 times

subsam-

pled
8-bit 5.478 5.404 5.239
symbols
16-bit 8.668 8.596 8.2553
symbols
24-bit 11.0216 10.7164 10.4536
symbols

For other scenes one of the two disparity vector maps are
used. Thus for CCIR-601 video the resulting data rate of
the chain map is 5.184 Mbits/sec.

Due to the bi-directional consistency check, the two
maps are highly redundant so the chain map can transfer
most of the information contained in both disparity vec-
tor maps [4]. The chain map has low inherent redundancy
[5] but the original disparity vector maps have some redun-
dancy due to the limited disparity range and filtering in the
final stages of processing [4].

Entropy coders in general do not have a absolutely de-
fined compression rate. It is not even necessary for them
to be able to compress all types of data. Their target is to
reduce the redundancy inherent in most bitstreams. An ap-
proximate metric of this redundancy is given by the entropy
of the input bitstreams. So in order to gain an insight in the
amount of compression feasible we first analyzed test se-
quences in terms of their entropy. The entropy is calculated
using the following equation:

H = — 3~ p(symbol) logy[p(symbol)]

The entropy gives the theoretical minimum number of
bits required to code the input data stream. The entropy of
the chain maps of various typical teleconferencing scenes
were measured and results are shown in Table 1. We note
that the longer the symbols are, the fewer bits are needed to
code them. So compression algorithms which can exploit
intersymbol redundancy should fare better than those that
utilize lone symbol probability distribution alone.

3. Lossless Compression Algorithm Evaluation

3.1. Algorithm selection

The algorithm selection process involved the evaluation
of the following parameters:



e Achieved compression rate (coding efficiency)
o Algorithm complexity.

e Latency

We decided to evaluate the performance on the three cat-
egories of lossless compression algorithms: Huffman cod-
ing, Arithmetic coding and Lempel-Ziv coding. The evalu-
ation was mainly based on the first two parameters. The in-
put bitstream was divided into constant sized blocks. These
blocks contain disparity data which correspond to a frame of
video data and are called disparity map frames. The size of
these frames was such that the above algorithms were able
to adapt and achieve reasonable compression rate. On the
other hand by controlling how often these algorithms reset
their adaptation mechanisms the introduced latency could
be bounded and recovery from transmission errors could be
carried out on the reset boundaries.

The test disparity maps were generated under realistic
teleconferencing conditions using corresponding disparity
estimator software. Candidates from each category were
tested with the simulated disparity map sequences to evalu-
ate achieved compression rate.

The following candidates were evaluated:

o Static and Adaptive Huffman algorithms [3],[6]
o Arithmetic Codes [2]

o Algorithms belonging to LZ77 group [91,[6].

o Algorithms belonging to LZ78 group [10].

Huffman algorithms achieve compression by assigning
short codewords to input symbols which are more probable.
This implies that there must be a probability model of the
input source which drives the Huffman encoder. In the case
of the static Huffman algorithm, the symbol probabilities
of fixed sized blocks of input data are extracted and then
these are used to encode the data. The size of the blocks
is equal to a frame of disparity map data so that decoding
could proceed on frame boundaries. The compressed bit-
stream is composed of the encoding tables and the encoded
disparity map bitstreamn. On the other hand the adaptive
Huffman algorithm doesn’t transmit the encoding tables.
These tables are modified in tandem by both the compres-
sion and decompressicn algorithms so each has the same
copy. Transmission of the encoding tables is avoided at the
expense of constant probability table maintenance which re-
duces throughput.

Arithmetic codes an: more efficient than Huffman codes
in terms of compression ratio but few implementations
achieved high data rates. To achieve good compression rate,
the arithmetic coders are driven by sophisticated probability
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models. These models make predictions based on the pre-
vious context, i.e. previous byte sequences. Unfortunately
every possible context had to be kept in memory restraining
context length to three bytes. Adaptation is also a problem.
The performance penalty due to this housekeeping became
quite obvious during the algorithm evaluation. In [2] two
different methods are described: the prediction by partial
matching (PPM) algorithm and Dynamic Markov Coding
(DMO). In our evaluation we used a variant of the first op-
timized for DSP operation.

Lempel-Ziv compression schemes belong to a class of
algorithms which view the input stream as a concatenation
of fixed or variable length strings of symbols. A mapping
procedure assigns unique codes to sequences of these sym-
bols which are found in the input stream. These algorithms
achieve compression by substituting sequences which have
previously appeared at the input with pointers to these oc-
currences. The data objects used to store the mapping be-
tween the previously occurring sequences and their corre-
sponding codes are called dictionaries. The management
of the dictionary structure differentiate the various exist-
ing algorithms. Available Lempel-Ziv algorithms generally
belong to two groups corresponding to the algorithms de-
scribed in [9] and [10]. In our evaluation we chose a rep-
resentative from the LZ-77 group and two from the LZ-78
group. Generally algorithms from the first group implement
sliding window dictionaries so they can be considered lo-
cally adaptive. This allows fast adaptation of the algorithm
to the input bit-stream. On the other hand, the second group
algorithms adapt more gradually but are able to adapt their
dictionary to the whole bit-stream. A summary of the adap-
tation characteristics of the evaluated algorithms is given in
Table 2.

3.2. Evaluation Platform

In order to carry out evaluation under conditions which
resemble real-time operation a system architecture based on
a fast DSP and re-programmable logic was used. The ar-
chitecture, which is shown in Fig. 2, is composed of four
basic modules: the input state machine, the DP-DSP with
hardware accelerators, the output state machine and system
configuration.

The input and output statc machine take care of the in-
terface functions with all other modules. In compression
mode, the input interface filter the disparity map data from
the CCIR 601/656 format, while in decompression mode
it accepts compressed data and passes them to the DSP
for decompression. During evaluation of compression al-
gorithms, the input interface was connected to a CCIR
601/656 test vector generator which stored disparity map
data. The DP-DSP with the accompanying hardware ac-
celerators implement the various compression algorithms.



Table 2. Adaptation characteristics of evalu-
ated compression algorithms

Algorithm | Adaptation Heuristic

name

Huffman Two pass per frame. One
to build symbol probabil-
ity model and second to
encode data

Adaptive Probability table modified

Huffman on the fly. Probability
tables not transmitted

Arithmetiq Each byte coded indepen-

Ord. O dently of context

Arithmetiq 1 byte context

Ord. 1

Arithmetiq 2 byte context

Ord. 2

Arithmetid 3 byte context

Ord. 3

LZ sSlid- 4096 entry sliding window

ing Dic- dictionary

tionary

LZ Dy- Fixed Codeword length =

namic 12 bits. 4096 entry dic-

Dictio- tionary. No adaptation

nary possible when the dictio-
nary is full

LZ Dy- Variable Codeword length =

namic 9 - 15 bits. 32 K entry

Dictio- dictionary

nary

The DSP used was the Motorola 96002 working at 40MHz.
The processor was augmented with 128 Kbytes SRAM. Re-
programmable logic was used to implement various func-
tions which could not implemented as software on the DSP.
The monitor processor was connected to a PC which car-
ried out statistics gathering functions such as compression
rate and throughput unobtrusively.

3.3. Evaluation Results

We evaluated existing algorithms which were written in
C code by porting them to the DSP. At first only some gen-
eral optimizations were carried out on the algorithms to take
advantage of various features of the processor such as par-
allel loading, floating point functions etc. Some initial com-
pression results for the MAN sequence are shown in Table
3. The compression ratio expresses the reduction in size of
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disparity map sequences. Compression and decompression
data throughput are measured relatively to the rate achieved
by the basic Huffman coding algorithm. On the DSP an
average rate of 2.5 Mbps was achieved.

No algorithm could attain the required thronghput using
its software implementation. Even with the fast DSP, the al-
gorithm complexity cannot support the disparity data rates.
Major optimizations on the most promising algorithms had
to be carried out to achieve the throughput requirement. The
Huffman algorithms had high throughput but compression
efficiency was very low. On the other hand the arithmetic
codes achieved the best compression efficiency but through-
put was an order of magnitude lower even though the code
was optimized for the DSP.

These results show that the LZ class combined reason-
able compression rates with high throughput. The dif-
ference between compression ratio between the arithmetic
coding routines and the LZ routines did not justify opti-
mizing the arithmetic coding routines for speed. Since the
compression efficiency of arithmetic codes was not much
greater while computing resources required were of an or-
der of magnitude larger, we decided to continue with the LZ
group. Compression rates were slightly lower than those
achieved by the LZ78 algorithms we tested.

Thus we undertook a complexity study of two LZ can-
didates to identity the blocks which needed to be adapted
so that the system specifications could be met and how
these adaptations affected the algorithms characteristics es-
pecially compression ratio.

The first candidate belonged to the LZ78 group which
we called L78/DSP. It was a dictionary-based scheme where
matching byte sequences were encoded and transmitted. A
hash index was used to search the dictionary for the longest
match. The code was rewritten in DSP96002 code and
a four-fold improvement was seen in throughput without
change in compression ratio. The throughput and compres-
sion ratio variation between sequential dictionary resets is
plotted for the MAN sequence in Fig. 3. It is noted that in
the encoder the dictionary search method incurs the greatest
overhead. Even so we noted that the compression ratio was
not affected by the resetting of the dictionary. This implies
that with these sequences temporal redundancies are con-
centrated only between adjacent frames. In order to increase
throughput the size of the dictionary could be reduced so
that the hash collisions are lessened. Hardware implemen-
tations of the LZW algorithm [7] use this method to increase
throughput.

This could be used to identify the number of frames re-
quired to get a good compromise between achieved com-
pression ratio and propagation of errors between com-
pressed blocks. These algorithms do not explicitly transmit
their dictionaries. The decoding algorithm builds it up from
the decoded bitstream. Unfortunately this requires that both



Table 3. MAN disparity map sequence com-

) Table 4. WOMAN disparity map sequence
pression results compression results
Comp.| Comp. Decom. Compr.
Ra- Rate | Rate Ratio
tio 1=2.5 (%)
(%) | Mbps Huffman 34.9
Huffman 32 1 1.09 Adaptive Huffman 35.1
Adaptive Huffman 32.2 1 0.53 | 0.63 Arithmetic Ord. 0 36
Arithmetic Ord. 0 34.2 1 0.21}10.1 Arithmetic Ord. 1 61
Arithmetic Ord. 1 56.8 | 0.07 | 0.06 Arithmetic Ord. 2 64.8
Arithmetic Ord. 2 58.11 0.09| 0.1 Arithmetic Ord. 3 68.9
Arithmetic Ord. 3 59 0.1 0.1 LZ Sliding Dictionary 56
LZ sliding Dictio- 50.8 1 0.15(1.74 LZ Dynamic Dictionary 44
nary Fixed Codeword length =
Lz Dynamic Dictio- 45,21 1.17 ] 1.45 12 bits
nary Fixed Code- LZ Dynamic Dictionary 62
word length = 12 Variable Codeword length 9
bits ~ 15 bits
LZ Dynamic Dic- 52.6 |1 1.45
tionary Variable
Codeword length 9 .
~ 15 bits very low. This was due to the search method employed.

dictionaries are built synchronously and errors corrupt the
decoding of subsequent symbols. By resetting the dictio-
pary at constant intervals the indefinite propagation of the
error is avoided. Also during decreased compression effi-
ciency some blocks can be selectively discarded without af-
fecting the decoding of following blocks. The effect of the
frequency of dictionary resets on the achieved compression
ratio is shown in Fig. 4. These results indicate that most re-
dundancy exists in the spatial neighborhood of each frame.
The best results were atiained when the reset interval didn’t
exceed two disparity frames.

Due to the nature of the building of the dictionary com-
plex heuristics were nezded to implement adaptation once
it was filled. Various exist in the literature even though they
improve compression by a little but they don’t lend them-
selves to easy implementations, Simply discarding the pre-
vious dictionary and starting a new gave comparable com-
pression results.

On the other hand 1.Z77 algorithms by virtue of their
“sliding window” dictionary achieved much better adapta-
tion features to locally concentrated redundancy. The dic-
tionary used a least recently used (LRU) update heuristic
where the oldest symbol was removed to make space for the
newest symbol. The second algorithin we tested belonged
to this group. Compression ratio was reasonable and de-
compression was very fast but compression throughput was
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Typically if this search algorithm is implemented in soft-
ware then if n symbols are contained in the dictionary then
the time needed to search the dictionary is O(n) [2]. In order
to find the optimum dictionary size we carried out various
tests on the available sequences. Compression rate results
are plotted in Fig. 5. We found that optimum compression
could be achieved with a very small dictionary. This dictio-
nary only needed to retain data which corresponded to one
or two previous video scanlines. Thus by constraining the
dictionaty the encoder processing rate improved consider-
ably. The required decompression rate was easily attainable
with a simple software implementation on the DSP.

The decompression unit could be implemented with a
software implementation of the LZ77 algorithm on the DSP.
Still the required compression throughput was not attained
with the use of software, so we decided to explore the pos-
sibility of using a hardware accelerator to implement the
compression algorithm. This work is described in the next
section.

4. Implementation of the LZFastSearch encod-
ing algorithm

The algorithm belongs to the LZ77 group of algorithms.
As such it substitutes sequences which have appeared pre-
viously with a pointer to the corresponding position and
length of the matching sequence. These are transmitted
when they need fewer bits to transmit than the bytes they
replace. A sliding window heuristic is used to update the
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dictionary.

Due to the redundancy characteristics of the input bit-
stream, only data corresponding to the previous one or two
scanlines need to be searched. Thus the dictionary can be
implemented as a digital delay line. Each element of the de-
lay line is composed of the comparison and carry-over cells.
The carry-over cells are connected to a priority encoder
which gives the relative position of the match. The length
counter gives the length of the matching sequence.The com-
parison cells compare the present input with their stored
value. The results are transferred to the carry-over cell. At
the end of the comparison the stored value is shifted to a
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Figure 5. Compression performance of LZ77
algorithm on WOMAN sequence

neighboring comparison cell. The width of the input ports
of the comparison cell can be variable in width although we
chose eight bit width for compatibility with the input bit-
stream. Also choosing wider widths reduced the number of
carry-over cells required for a constant delay line size.

The carry-over cells keep information from the previous
comparison and modify the result of the comparison cell be-
fore transferring it to the priority encoder. These cells “re-
member” previously occurring sequences. Their ability to
“remember” depends on existence of matches. Each time an
attempt is made to encode the longest possible sequence. If
a match doesn’t occur then the resulting code on the longest
match found is output, the carry-over cell is cleared and a
new cycle is begun.

The processing of each input byte is divided into four
phases:

o Comparison of input with stored values in comparison
cells

e Match evaluation with previous context enabled in
carry-over cells

e Match evaluation with previous context disabled

e Storage of current match result for use with next pro-
cessing cycle.

The algorithm has been implemented using FPGAs, so
processing time is bounded and depends mainly on the com-
binatorial delays of the priority encoder. An 128-byte length
delay line was implemented in an Xilinx 4013 using ar-
chitectural features such as on-chip RAM. Throughput of
around 5 Mbytes/sec was achieved.
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5. Conclusion

In this paper we presented an analysis of available loss-
less compression algorithms and their feasibility for com-
pressing real-time disparity data in terms of compression ra-
tio and implementation complexity. We justify the choice of
LZ algorithms based on the compression performance and
complexity on simulation on real-time disparity sequences.

Various characteristics of the disparity bit-stream were
given and the algorithms were modified to take advantage
of those characteristics. A hardware architecture based on
DSP and re-programmable logic hardware accelerators is
presented and utilized for the evaluation of candidate com-
pression algorithms. The compression algorithms reduce
the data rate by a factor of two but don’t satisfy the through-
put requirement. An algorithm from the LZ77 and LZ78
are chosen for optimization. The first algorithm chosen
gave good compressiorn: performance and high throughput
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on the chosen hardware base. The second algorithm gave
faster adaptation performance to the localized redundancy
of the disparity map and provided somewhat better com-
pression performance and high decompression rate. The
compression throughput requirement was achieved through
a straightforward implementation on an FPGA.
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