
Reprint

Reconfigurable Network Processors based on Field
Programmable System Level Integrated Circuits

M. Iliopoulos and T. Antonakopoulos

The 10th International Conference on Field Programmable
Logic and Applications – FPL2000

 VILLACH, AUSTRIA, AUGUST 2000

Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons
copying this information are expected to adhere to the terms and constraints invoked by each author's
copyright. In most cases, these works may not be reposted or mass reproduced without the explicit
permission of the copyright holder.

R.W. Hartenstein and H. Grünbacher (Eds.): FPL 2000, LNCS 1896, pp. 39−47, 2000.
 Springer-Verlag Berlin Heidelberg 2000

Reconfigurable Network Processors
Based on Field Programmable

System Level Integrated Circuits

Marios Iliopoulos and Theodore Antonakopoulos

Department of Electrical Engineering and Computers Technology
University of Patras, 26500 Rio – Patras

Greece
antonako@ee.upatras.gr

Abstract. The increasing demand of networking applications has imposed a
new category of electronic circuits that integrate powerful CPU processing,
networking and system support functions in a single, low cost chip. These
integrated circuits, called Network Processors, are optimized for tasks such as
access protocol implementation, data queuing and forwarding, traffic shaping
and Quality of Service (QoS) support. This paper presents the use of Field
Programmable System Level Integrated Circuits that combine the flexibility of
programmable cores and the high performance of dedicated hardware, to
implement network processors used for medium access protocols.

1 Introduction

Network Processors should offer flexibility, programmability, performance and low
cost while being able to shorten time-to-market cycles for new networking products.
However, these requirements contradict since network processors that consist of
programmable cores may offer flexibility and less time-to-market but usually they
have poor performance and increased cost. On the other hand, network processors that
contain dedicated hardware offer high performance and low cost, but are less flexible
and have higher time-to-market cycles [1]. Another solution is to use a programmable
core supported by dedicated hardware in order to increase the efficiency and
performance of programmable cores. Although this solution is easily adaptable to
newer versions of the supported protocol, it still suffers from decreased flexibility,
since dedicated hardware restricts the usage of the chip to a specific application.

Latest trends in network processors design combine RISC processor cores with
reconfigurable hardware in an attempt to solve the trade-off of high performance and
flexibility. A new emerging technology developed towards this approach is called
Field Programmable System Level Integrated Circuits (FPSLICs) [2] and combines
an 8-bit RISC microcontroller (AVR), reconfigurable hardware using Field
Programmable Gate Array (FPGA) cells and SRAM, thus it can offer a single chip
solution for complete systems.

40 M. Iliopoulos and T. Antonakopoulos

This paper presents the use of FPSLIC architecture as a vehicle to implement
reconfigurable network processors that are able to implement low complexity access
protocols. This is because the 8-bit AVR processor is considered „weak“ for the
demands of complex network protocols, but it can still be used for networking
applications such as 10Mbps Ethernet MAC, Point-to-Point Protocol controllers,
home control networking, etc. On the other hand, the same basic idea supported by a
32-bit powerful microprocessor (such as an ARM processor core) and more
reconfigurable logic will enable the implementation of network processors capable of
supporting higher data rates and more complex protocols such as the IEEE 802.11,
Bluetooth and 100Mbps Ethernet.

This paper makes use of a parametric architecture called General Network
Architecture (GNA) [3] that directly maps network functions into a set of
customizable hardware blocks that are interconnected through flexible interfaces.
Section 2 introduces the FPSLIC architecture, the general network architecture and
how GNA is mapped to an FPSLIC device. Section 3 demonstrates the
implementation of a 10Mbps Medium Access Controller using general network
architecture and one FPSLIC device. Finally, section 4 describes the implementation
of more powerful network devices using the FPSLIC architecture and distributed
processing.

2 Introduction to FPSLIC and GNA Architectures

In order to understand the use of FPSLICs for implementing reconfigurable Medium
Access processors, we will describe in brief the FPSLIC architecture (section 2.1), the
General Network Architecture (section 2.2), and how the GNA architectural blocks
map to the FPSLIC device resources.

2.1 The FPSLIC Architecture

As illustrated in Figure 1, the initial version of FPSLIC contains the AVR
microprocessor core, which is an 8-bit RISC processor with single-clock instructions,
approaching 1 MIPS/MHz and 32 general purpose registers. The AVR core is
supported by peripherals such as flexible timer/counters, a Real-time Counter,
UARTs, programmable Watchdog Timer with internal oscillator, a 2-wire serial port
interface and programmable I/O ports. The FPSLIC also contains 36K bytes of
SRAM for program execution and data storage.

The reconfigurable part of FPSLIC is an SRAM based FPGA module with
configurable Dual Port RAM cells. The FPGA has user programmable I/Os for
interfacing to external world and may support low to medium complex devices (10K
to 40K gates).

The AVR and the FPGA module communicate using three different interfaces: a
control interface, 16 interrupt lines and a dual port RAM. The control interface
decodes AVR address lines and control signals for accessing 16 memory mapped
registers implemented in the FPGA, thus it can be used for implementing custom
peripherals and/or directly controlling FPGA functions. AVR’s interrupt controller
can accept 16 programmable interrupt lines, which are produced by the FPGA.

Network Processors Based on Field Programmable System Level Integrated Circuits 41

Finally, the AVR and the FPGA can also communicate through a dual port RAM
which can be read/written by both the AVR and the FPGA allowing shared memory
implementations.

FPGA

I/O ports
16 I/O
lines

2 UARTs

2 wire I/F

Interrupt
Controller

4 External
Interrups

I/O

I/O
uP

(AVR)

16 interrupt lines

Program
S R A M

Data
S R A M

Data Bus

Data

4:16 addr
decode

P
ro

gr
am

m
ab

le
 I/

O
s

P rogrammable I /Os

I/O

Fig. 1. The FPSLIC architecture

2.2 The General Network Architecture (GNA)

The FPSLIC resources are exploited by using the General Network Architecture
(GNA) [3], which is a parametric architecture for realizing Medium Access Protocols.
The General Network Architecture consists of customizable hardware blocks that are
interconnected through flexible interfaces according to the dataflow illustrated in
figure 2. The customizable hardware blocks perform bit-serial functions that process
the serial bit-stream, parallel functions that process the parallel data, event processing
functions that recognize the network events, and control functions that synchronize all
the above blocks and consist of control registers, and state machines.

According to figure 2, the received serial data are passed through the bit-serial and
parallel operations before they are stored into buffers and processed by the protocol’s
functions implemented in firmware. The whole process is controlled by the state
machines block, which transacts with the above functions and the events coming from
the network. Similarly, in the transmit direction, the data coming from the buffers are
transformed through parallel and bit-serial operations into a bitstream, which is
transmitted over the network. The processor core configures/controls the GNA blocks
and collects status information through a control interface.

There are two main blocks in the architecture, the Receiver section which contains
all the receive related functions, and the Transmitter section that contains all the
transmit related functions. The control section contains all the control registers that
are programmed/read by the microprocessor through a separate control interface. The
control interface can be a custom microprocessor interface or a standard bus.

42 M. Iliopoulos and T. Antonakopoulos

Bit-Serial
Operat ions

Paral lel
Operat ions

Data Clock

Buffers

Control
registers
and State
Mach ines

D M A
(optional)

Bit-Serial
Operat ions

Paral lel
Operat ions

Data Clock

Buffers

R
eceive D

irection
Tr

an
sm

it
D

ire
ct

io
n

Processor Core

Network
Control

Fig. 2. The General Network Architecture

The data movement from/to the memory is accomplished through a dedicated path,
either transparently without processor intervention by using a DMA engine, or by
using direct processor read/writes without any DMA support.

The bit-serial functions block contains an array of bit-serial functions that are
interconnected in such a way that each of them can work cascaded or in parallel with
the others through configurable interconnections. In the receive direction the bit-serial
functions block gets input from the network and gives output to a serial-to-parallel
shift register. In the transmit direction the bit-serial functions block gets input from a
parallel-to-serial shift register and outputs to the network. The parallel functions block
contains an array of functions connected to configurable interconnections as in the
bit-serial functions block. The parallel functions block interfaces with the shift
register and local FIFOs.

The events section monitors network events and informs the state machines section
which controls and collects status from all the other blocks in the architecture. FIFOs
are parameterized according to network buffering requirements and are connected to
the DMA engine blocks or to the control registers section depending on the data path
implementation.

Using the FPSLIC, all network related functions i.e. the bit-serial, parallel
functions and the state machines contained in the GNA are implemented into the
programmable logic, while the RISC processor implements all the control and
management functions of the protocol. The FPSLIC’s dual port SRAM, which is
accessible by both the reconfigurable logic and the microprocessor can be used for
temporary data storage while control and status information can be exchanged
through the control and interrupt logic provided. Host transactions can be

Network Processors Based on Field Programmable System Level Integrated Circuits 43

accomplished either by using the integrated UARTs, or through a custom host
interface implemented in the programmable logic. With the integration of the program
SRAM, FPSLIC does not require external memory devices, except from a serial
FLASH for downloading program data into its internal memory.

3 Application Example – 10 Mbps Ethernet MAC Controller

A 10Mbps Ethernet MAC controller is used to implement the access protocol as
defined in [4]. In the receive direction the MAC controller searches for Start-of-Frame
Delimiter (SFD) at the beginning of each packet, qualifies the frame length and the
received address and verifies the CRC. Also, it observes any receive code violations
or carrier events that may occur and keeps a status vector for each packet received. In
the transmit direction the MAC controller adds to the supplied frame a seven-bytes
preamble and one-byte SFD, performs padding on frames having fewer than 60 bytes
and appends the CRC. Also, the MAC controller performs the carrier sense, collision
detection and the back-off algorithm and reports the status of the transmission using a
status vector for each packet.

The application of GNA and FPSLIC for the implementation of a 10Mbps MAC
controller is illustrated in figure 3. The general network architecture is customized in
this case for supporting a 10 Mbps Ethernet network interface card.

The network functions implemented in the reconfigurable part of the chip consist
of a receiver section and a transmitter section. The receiver section consists of a CRC-
32 check module (bit-serial function), preamble detect, SFD detect modules (parallel
functions) and the receive state machine which controls all the receive blocks using
information from the control registers and network events (carrier sense, collision
detect module). It produces write enable and address signals for writing the received
data in the common dual port RAM module. On the other hand, the transmitter
section consists of a CRC-32 generation module and a transmit state machine which
controls the data flow to the network. It receives information from the control
registers and network events and produces address and control signals for reading
data from the dual port RAM.

Queue management, statistics gathering, buffer descriptors, control frame
generation/detection, back-off and other MAC functions are performed by state
machines implemented in software and executed by the AVR microcontroller.

An ISA interface, implemented in the FPGA, offers the appropriate host interface
for reading/writing data and passing control, configuration information to the MAC.
The full system is completed by an external I2C flash for AVR program downloading
and power up FPGA configuration, plus an Ethernet 10Mbps physical device.

In a typical reception procedure using the FPSLIC-MAC the receive block
recognizes the start of packet (preamble) and the start of data (SFD) and stores the
incoming parallel data to a buffer in the Dual Port RAM while sending an interrupt to
the AVR processor. The AVR processes the packet header and constructs a receive
buffer descriptor in the dual port RAM memory. When reception is completed, AVR
causes an interrupt to the host indicating that a valid packet is stored at the location
indicated by the buffer descriptor. In the transmit direction, the host stores the data to
be transmitted in the dual port RAM and constructs a transmit buffer descriptor. The
AVR appends the preamble, the SFD and the padding if needed and initiates a

44 M. Iliopoulos and T. Antonakopoulos

transmission. According to the status information received by the events processing
block, it either marks the transmission as successful or retransmits the packet if a
collision is detected performing the appropriate back-off algorithm. The transmission
state machine appends the CRC and sends the data over the channel.

The implementation of the above 10Mbps MAC showed a problem in the FPSLIC
architecture which was the limited addressing capability of the AVR processor to the
FPGA part through the static microcontroller interface that uses only 2 address bits
(directly address 4 registers and indirectly addresses 16 registers). A solution was to
use the general purpose I/Os of the AVR processor to externally extend the address
space for interfacing to the FPGA section.

TRANSMITTER Section
Bit serial Functions

RECEIVER Section

Carrier
Sense

Coll ision
Detect

Bit serial Functions
Shift Register

CRC-32

Parallel Functions

Preamble Detect

Parallel Data

Receive State
Machine

CRC-32

Data

Clock

Data

Clock

SFD Detect

Parallel Data

Transmit State Machine

CRC

Control Registers

uP Interface

ISA Host Interface

Shift Register

D
ual P

ort R
A

M
 A

rbiter

D
ual P

ort R
A

M

A
V

R

P
rogram

 R
A

M

ISA
signals

CLD

CRD

data

addr

data

addr

data

addr

data

addr

Fig. 3. Block diagram of an Ethernet MAC controller

Network Processors Based on Field Programmable System Level Integrated Circuits 45

4 Extending FPSLIC Capabilities

Due to the limited performance of the AVR 8-bit microcontroller, more demanding
network architectures require powerful microcontrollers. One solution is to use more
than one FPSLIC devices, implementing a distributed network processing solution.
An architecture like the one illustrated in figure 4 is able to implement more complex
network devices for processing at higher data rates and for supporting more
demanding protocols.

AVRDPRAM addr

datadata
arbiter

addr

FPSLIC
extension I /F

FPSLIC
extension I /F

Internal Network
logic

data

addr

da
ta

ad
dr

data

addr

uP inter face Decoder

ad
dr

da
ta

uP inter face Decoder

addr

data

Int
G

P
IO

I/F
I/F

Interrupts
to other

FPSLICs

Interrupts
from other
FPSLICs

To other
FPSLIC

To other
FPSLIC

A V R
extension I /F

A V R
extension I /F

I/F
I/F

I/F
I/F

Fig. 4. FPSLIC configured for extension

The idea is based on connecting the configurable parts of two or more FPSLIC
devices to produce a more powerful device with common memory space and to off-
load protocol complexity by using more than one AVR processors. The
communication between AVRs takes place through GPIOs, interrupts and a control
path that is implemented in the reconfigurable logic illustrated as the AVR extension
interface. Using the AVR extension interface, the AVR can also access the DPRAM
of adjacent FPSLIC devices. The configurable part of the FPSLIC is extended through
the FPSLIC extension interface.

An architecture containing two FPSLIC devices like the one shown in figure 5, can
be used to implement access protocols requiring full duplex operation. Each AVR
processor is attached to one direction (transmit or receive). The AVR processors
execute code that controls the respective direction, while exchanging information
through the AVR extension interfaces using either control registers or the dual port
RAMs that can be accessed by both AVR cores (dashed line). A host interface can be
implemented in the reconfigurable part of one of the FPSLIC devices while still
having access to the dual port RAM of the other device through the FPSLIC extension
interface.

46 M. Iliopoulos and T. Antonakopoulos

AVR
DPRAM

addr

datadata
arbi ter

addr

FPSLIC
extension I /F

Receiver
Logic

data

addr

da
ta

ad
dr

uP interface Decoder

ad
dr

da
ta

Int
G

P
IO

AVR
DPRAM addr

datadata
arbi ter

addr
Transmitter

Logic

data

addr

data

addr

uP interface Decoder

addr

data

Int
G

P
IO

FPSL IC
extension I /F

A V R
extension I /F

I/F

A V R
extension I /F

Rx
Signals

Tx
Signals

I/F

Fig. 5. Network processing example for the extended FPSLIC architecture

Two FPSLIC devices are connected together to implement the bridging between a
modem connected to a telephone line and the Ethernet. The AVR processor of the
FPSLIC device connected to the modem (through RS-232 interface), implements the
PPP protocol and stores the data to the DPRAM of the FPSLIC connected to the
Ethernet. The FPSLIC MAC processes the data according to the IEEE 802.3 protocol
and transmits them over the Ethernet. In the other direction, the FPSLIC MAC
processes the data from the Ethernet and passes them to the other FPSLIC device that
performs the appropriate protocols in order to be sent over the telephone line.

5 Conclusions

The configurable nature of an FPSLIC device together with the general network
architecture gives the network designer the flexibility to implement different access
protocols based on the same platform, which consists of the microprocessor
development tools and a HDL model of the General Network Architecture. In this
paper we presented the use of FPSLIC architecture for implementing low complexity
reconfigurable network processors and how this architecture can be extended to
implement more powerful, distributed network processing tasks.

Network Processors Based on Field Programmable System Level Integrated Circuits 47

References

1. Nicholas, Cravotta, Network processors: The Sky’s the Limit, EDN Magazine, November
1999, pages 108-119.

2. ATMEL, AT94 Series Field Programmable System Level Integrated Circuit, Advance
Information.

3. Marios Iliopoulos, Theodore Antonakopoulos, A Methodology of Implementing Medium
Access Protocols Using a General Parameterized Architecture, 11th IEEE International
Workshop on Rapid System Prototyping, June 2000, France.

4. ANSI/IEEE Std 802.3-1996: Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) access method and physical layer specifications

	1	Introduction
	2 Introduction to FPSLIC and GNA Architectures
	2.1	The FPSLIC Architecture
	2.2	The General Network Architecture (GNA)

	3 Application Example – 10 Mbps Ethernet MAC Controller
	4 Extending FPSLIC Capabilities
	5	Conclusions
	References
	2000_FPL_NetworkProcessors1.pdf
	Reprint
	M. Iliopoulos and T. Antonakopoulos

