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ABSTRACT:   Inefficient resources utilization is 
met in various embedded communication 
devices, which are based on standard processor 
cores and custom hardware modules.  This paper 
addresses the inefficient resources utilization 
problem in MAC processor designs and presents 
a solution that is based on reconfigurable 
processor architecture and on dynamic-static 
instruction partitioning, depending on medium 
access protocol requirements. The presented 
instruction partitioning is based on statistical and 
time critical functional analysis for minimizing 
the required hardware resources. 
 

1. INTRODUCTION 
 
Medium Access Control (MAC) chips use 
powerful RISC processor cores integrated with 
sophisticated hardware modules in order to 
support the complex and stringent timing 
requirements of the supported access protocol 
[1], [2]. As the time-to-market becomes shorter 
and various versions of the same protocol are 
issued for covering new market needs and trends, 
the MAC chips must be designed in order to be 
easily adapted to new protocol requirements. 
This desirable feature of MAC processors 
increases the cost and power consumption of the 
system, since the chip resources are not used 
efficiently, while a static design could not always 
meet the new protocol requirements. Therefore 
the designer has to trade-off between efficiency 
and flexibility for determining the final chip 
architecture.  
A solution to this problem is to replace the 
dedicated hardware by programmable logic that 
can be adapted to the protocol requirements (and 
its newer versions) in a flexible and reliable way. 
The reconfigurable hardware is easily adapted to 
new protocol requirements and may offer 
solutions optimized for speed, area or power 
consumption according to system needs. The 

major advantage of a reconfigurable solution is that 
the same logic resources can be used for 
implementing different functions, depending on the 
specific protocol functionality and this can be done 
‘on-the-fly’ by exploiting dynamic reconfiguration. 
The idea of dynamic reconfiguration is also applied 
to dynamic instruction set computers that alter their 
instruction set during the program execution. 
Generally, there are two major disadvantages on 
using reconfigurable hardware. The reconfigurable 
hardware costs more than dedicated hardware for 
implementing the same set of functions. This 
problem can be solved by increasing the reusability 
of the hardware resources, that is to share the 
hardware resources to more than one functions and 
thus to increase the functional density of the device. 
The second disadvantage of reconfigurable 
hardware is the long reconfiguration time, which in 
some cases is unacceptable, especially in dynamic 
reconfiguration. The work presented in this paper 
deals with this problem by exploiting instruction 
caching and dynamic-static instruction partitioning, 
depending on the MAC protocol requirements.  
Section 2 introduces the conventional network 
processor design flow and illustrates the processor 
usage in some MAC processors. Section 3 
describes the architecture of a new reconfigurable 
processor, while Section 4 introduces a 
methodology that leads to instruction set 
optimization. Section 5 demonstrates the results 
obtained by applying the new methodology to 
convert a conventional MAC processor into a 
dynamic one. 
 

2. MAC PROCESSOR USAGE 

The design flow used for designing a MAC 
processor is based on formal protocol description 
and on hardware/software partitioning [3]. The 
partitioning is usually based on the assumption that 
critical functions are transferred into hardware, 
while functions that require more relaxed timing 
can be implemented using microcode.  
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An example of a MAC processor design based on 
this flow is described in [4]. In this example, an 
IEEE802.11 MAC processor was designed based 
on an ARM CPU, while the initial processor 
architecture was implemented on a development 
board using FPGAs for design verification. This 
development board was used to evaluate system 
performance and to test MAC functions, by 
downloading code in the ARM processor. This 
process allowed the identification of time critical 
functions and architectural bottlenecks, at initial 
design stages.  
After verifying the design, we used the 
development platform to evaluate processor 
usage for MAC functions execution. The 
evaluation was performed by calculating how 
frequently different instructions were used in 
order to implement the specific protocol 
functions. The same procedure was used to 
implement and to evaluate an IEEE802.11-to-
Ethernet bridge. Both systems were based on the 
ARM processor core and additional custom 
hardware for implementing the any additional 
MAC protocols [5], [6]. The evaluation results 
are shown in Figure 1 (a) and (b). The 
instructions used in both protocols are less then 
50% of the instruction set of the ARM processor 
and only six of them (ADD, MOV, CMP, LDR, 
STR, B) take up to 95% of the total instruction 
count, while the rest instructions take less then 
5%.  These results mean that using the ‘off-the-
shelf’ ARM core a lot of hardware resources of 
the final chip are used infrequently or are not 
used at all. 
A first approach that would lead to hardware 
optimisation is to design a processing unit that is 
optimised for executing only the instructions 
contained in the specific code. This approach is 
commonly used to implement Application 
Specific Instruction Set Processors (ASIPs). The 
disadvantage of this approach is that the 
implementation is of limited use. For example, 
we could implement a version of the ARM 
processor that would be optimised to execute the 
previous instructions efficiently, but it would 
have limited performance for other protocol 
implementations or for future updates of the 
same protocol that would require a different 
instruction mix. 
The approach that has more potential in 
implementing flexible medium access processing 
systems is based on processors with configurable 
instruction set. These processors can load their 
instruction sets either dynamically, while the 

program is executing (run-time reconfigurable), or 
statically, before program execution. Both solutions 
are easily adaptable to the requirements of each 
protocol, and they have the capability to implement 
more complex and specialised instructions 
(especially when run-time reconfigurability is 
used). Moreover, they reduce the protocol 
development time, due to their adaptability and 
ease the implementation of the sensitive parts of the 
protocol by transferring functions into hardware. 
The dynamic approach is the most promising one, 
since it offers more functional density as it replaces 
instructions at run-time. A dynamic instruction set 
processor with instruction caching ([7], [8]) 
downloads instructions into the reconfigurable 
processor, like conventional processors download 
instructions into a cache memory. According to the 
traditional dynamic instruction set processors, 
instruction replacement takes place each time there 
is a cache miss. In this paper we present the 
application of a dynamic approach in order to 
implement medium access processors, which have 
dynamic instruction set, compatible with a known 
processor (e.g. ARM), and a methodology for 
partitioning the instruction set to dynamic and static 
subsets, based on statistical analysis and the 
specific MAC protocol needs.  
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Fig. 1: Instruction usage for the IEEE802.11 (a)  and 

the IEEE802.3 (b) MAC protocols. 
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3. RECONFIGURABLE MEDIUM 
ACCESS PROCESSING UNIT 

 
In this paragraph we define the architecture on 
which the instruction set optimization 
methodology is based. The proposed 
reconfigurable architecture is illustrated in Figure 
2 and is based on the principles of dynamic 
instruction set processors and characteristics such 
as: dynamic instructions based on configuration 
tables, fixed operand coding, re-locatable 
instruction loading and partial reconfiguration of 
the hardware resources. 
The reconfigurable architecture consists of the 
following basic blocks: the instruction fetch and 
decoding units and the instruction execution unit, 
which consists of the static and the dynamic 
sections. The static section consists of 
configurable static instructions that are loaded at 
power up, while the dynamic section contains a 
cache of dynamic instructions that are loaded on 
demand. The architecture is completed by an 
instruction scheduler, which takes care of the 
caching and the dynamic instruction loading. The 

basic blocks of the architecture are analyzed below: 
The instruction fetch unit is responsible for the 
generation of the addresses issued to the memory 
for program execution. The instruction fetching 
unit of the dynamic processor is similar to the 
fetching unit of a conventional processor and 
consists of a program counter that points to the 
position of the next instruction, an interrupt handler 
that issues the appropriate command in case of an 
exception and a branch mechanism that calculates 
the next program position, when a branch 
instruction is executed. The fetched instruction is 
latched in the instruction register in order to be 
used by the decoding unit. 
The decoding unit uses the instruction register to 
decode the instructions and to generate the 
appropriate signals to the execution unit (for static 
and dynamic sections), the fetching unit (branch 
instructions) and the scheduler unit. As mentioned 
above, the decoding unit uses fixed operand 
decoding, which means that the selection of the 
operands is not changed at run-time, because it is 
encoded in the instructions at compile time. 
However, in order to increase flexibility, the 
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Fig. 2: The Dynamically Reconfigurable Processor Architecture 
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Fig. 3: Methodology for instruction set optimisation 

selected dynamic instruction is able to select any 
of the registers or memory ports, by encoding the 
selection in the dynamic function. The dynamic 
instructions can also use virtual (reconfigurable) 
registers that can be backed up/restored from the 
memory, each time the dynamic instruction that 
uses them is swapped in or out the reconfigurable 
array. 
The scheduler is a special unit that loads and 
replaces instructions from the reconfigurable 
logic. The scheduler has a port connected to the 
memory that contains the configuration 
information and a port connected to the SRAM 
based reconfigurable array. The scheduler 
contains also: a table (Opc_Table) which 
contains the opcodes, the corresponding 
addresses in the configuration memory and 
resources required by each dynamic instruction, a 
table with the available resources in the 
reconfigurable logic (Resource_Table) and a 
table (Cache_Table) with the dynamic 
instructions that are loaded into the 
reconfigurable array. The scheduler state 
machine works as follows: 
1. The opcode of the decoded instruction is 

compared to the opcodes of the dynamic 
instructions that exist in the Opc_Table. If the 

instruction is static, the scheduler goes to the 
idle state waiting for the next decoded opcode, 
otherwise proceeds to step 2. 

2. The opcode of the instruction is compared to the 
opcodes contained in the Cache_Table to 
determine if the instruction is in the 
reconfigurable array. If not, the scheduler stops 
normal execution by issuing a HOLD signal and 
proceeds to step 3, otherwise it goes to idle 
state.  

3. In this step the scheduler checks the 
Resource_Table to find out if there are available 
resources in the reconfigurable array to load the 
new instruction. If there are no available 
resources, an existing instruction is replaced 
according to a replacement algorithm such as 
the ones used in caches (random, First-in-First-
out, Least Recently Used - LRU). The load of a 
new instruction or the replacement of an 
existing instruction causes the Cache and 
Resource tables to be updated. As soon as the 
reconfigurable array is loaded, the scheduler 
deasserts the HOLD signal allowing normal 
code execution.  

It is obvious that the selection of the static and 
dynamic subsets has to be performed in such a way 
that minimizes the cache missing effect. 
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4. INSTRUCTION SET OPTIMISATION 
 
Using the dynamic processor presented in the 
previous section, we can proceed to instruction 
set optimisation methodology that is illustrated in 
Figure 3. There are two key points in this 
methodology: the function that evaluates the 
costs of the various instructions and the 
partitioning algorithm that divides the 
instructions into dynamic and static. The cost 
calculation function takes as input the instruction 
weights as extracted:  
(a) by the C code of the protocol after statistical 

analysis and  
(b) by the protocol critical functions as 

specified in the first step of the MAC 
processor development. 

The number and the types of instructions that are 
used in the various timing critical paths of the 
protocol implementation determine the minimum 
size of the dynamic instruction cash and the static 
instruction subset. The cost calculation function 
extracts instruction weights depending on how 
often each instruction is used and how critical are 
the functions that contain the specific instruction. 
The calculated weights are used by the 
partitioning algorithm to divide the instructions 
into dynamic and static. The static instructions 
are configured at the system power-up and are 
not replaceable by other instructions. Dynamic 
instructions are replaced at run-time using the 
scheme described in the previous section. 
The partitioning algorithm takes as input the 
hardware resources available and the cost of each 
instruction set for hardware implementation. The 
outcome of this process is a mix of dynamic and 
static instructions that fits into the available 
hardware resources and is capable to perform the 
protocol functions by minimizing the 
performance penalties. The instructions’ cost is 
calculated using databases produced after 
implementation in a specific technology. The 
databases contain information like area, power 
consumption and performance (maximum 
frequency) and are used by the partitioning 
algorithm to evaluate different implementations.  
In case a specific static-dynamic partitioning 
does not satisfy the critical functions, the 
partitioning algorithm performs new instruction 
set optimisation using the feedback produced to 
recalculate the instruction weights. The process 
repeats until all requirements are met. The final 
step of the proposed methodology performs the 

verification of the system, running the code at the 
reconfigurable processor. 
 

5. EXPERIMENTAL RESULTS 
 
In order to demonstrate the use of the new 
methodology, we emulated a dynamic version of 
the ARM processor used in the medium access 
processing systems mentioned in Section 2. The 
dynamic ARM processor contains the same 
instruction set as its static version, but implements 
part of them as dynamic instructions (the 
instructions indicated in the statistical analysis) and 
contains also a scheduler that executes the state 
machine described in Section 3. Each of the 
instructions was assigned a resource value that 
corresponds to the complexity of the instruction 
and an address to the configuration memory that is 
connected to the scheduler and stores the 
configuration data for each instruction. The 
emulation program monitored the processor 
performance by calculating the instruction cache 
misses in two different cases. In the first case the 
partitioning between static and dynamic 
instructions changes, while the total resources 
remain the same. In the second case, the 
partitioning remains the same but the cache size 
varies for supporting a different number of dynamic 
instructions. 
In the first case, the partitioning algorithm divided 
the instructions to static and dynamic, initially 
using no weights for the instructions (all dynamic) 
and then by transferring the instructions with the 
higher weights in the static instructions subset. The 
weights of the instructions using the static analysis 
of code are shown in Table 1.  
Partition 1 is based on static analysis results, while 
partition 2 uses also protocol execution 
information, e.g. how frequently a path or a 
subroutine is used. The results for these two 
scenarios are shown in Figure 4. Partition 1 gives 
its best results for the 8th run (7 static and 10 
dynamic instructions). Partition 2, which 
approaches the optimum partition, since it uses 
information containing the dynamic use of each 
instruction, produces better results compared to 
partition 1 for almost all runs. 
Figure 5 depicts the results produced for different 
cache sizes, when 6 static instructions and 11 
dynamic are used. We performed 6 runs using total 
configurable resources that were 35, 45, 53, 60, 70 
and 80% of the static configuration resources. As 
shown in this Figure, for cache sizes over 60% of 
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Fig. 5: Cache miss as a function of cache size 
(percentage of total static resources) 

Table 1: Instruction Weights 

Instr. Static 
Weight 

Critical 
Func.  

Weight 

Tot. Part.1  Part.2 

ADD 0.056 0.02 0.076 8 12 

AND 0.004 0.03 0.034 9 11 

ORR 0.014 0.03 0.034 10 10 

SUB 0.002 0 0.002 14 14 

CMP 0.054 0.05 0.104 7 7 

MOV 0.213 0.15 0.363 2 1 

MVN 0.001 0 0.001 16 16 

MUL 0.001 0 0.001 15 15 

LDR 0.155 0.17 0.325 3 2 

STR 0.212 0.19 0.402 1 6 

STM 0.003 0 0.003 13 13 

LSL 0.080 0.09 0.170 5 5 

LSR 0.039 0.10 0.139 6 4 

PUSH 0.010 0.02 0.030 11 8 

POP 0.010 0.02 0.030 12 9 

B 0.135 0.11 0.245 4 3 

SWI 0.001 0 0.001 17 17 

the total resources, the cache miss is very low 
(and practically does not affect the total 
execution time).  
 

6. CONCLUSIONS 
 
This paper addressed the problem of inefficient 
resources utilization of MAC processor designs 
and presented a reconfigurable processor 
architecture and a methodology for optimizing 
processor instruction sets by using the 

advantages of dynamic reconfiguration. The 
presented methodology produces a mix of dynamic 
and static instructions that implement the MAC 
protocol functions and evaluates different 
implementation options for minimizing the required 
system resources. 
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