
Reprint

Optimized Reconfigurable MAC Processor Architecture

 M. Iliopoulos and T. Antonakopoulos

The 8th International IEEE Conference on Electronics, Circuits,
and Systems, ICECS 2001

MALTA, 2− 5 SEPTEMBER 2001

Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons
copying this information are expected to adhere to the terms and constraints invoked by each author's
copyright. In most cases, these works may not be reposted or mass reproduced without the explicit
permission of the copyright holder.

Marios Iliopoulos and Theodore Antonakopoulos

Computers Technology Institute (CTI), Riga Fereou 61, 26221 Patras, Greece

Department of Electrical Engineering and Computers Technology,
University of Patras, 26500 Rio-Patras, Greece

Tel: +30-61-997346, e-mail: antonako@ee.upatras.gr

ABSTRACT: Inefficient resources utilization is
met in various embedded communication
devices, which are based on standard processor
cores and custom hardware modules. This paper
addresses the inefficient resources utilization
problem in MAC processor designs and presents
a solution that is based on reconfigurable
processor architecture and on dynamic-static
instruction partitioning, depending on medium
access protocol requirements. The presented
instruction partitioning is based on statistical and
time critical functional analysis for minimizing
the required hardware resources.

1. INTRODUCTION

Medium Access Control (MAC) chips use
powerful RISC processor cores integrated with
sophisticated hardware modules in order to
support the complex and stringent timing
requirements of the supported access protocol
[1], [2]. As the time-to-market becomes shorter
and various versions of the same protocol are
issued for covering new market needs and trends,
the MAC chips must be designed in order to be
easily adapted to new protocol requirements.
This desirable feature of MAC processors
increases the cost and power consumption of the
system, since the chip resources are not used
efficiently, while a static design could not always
meet the new protocol requirements. Therefore
the designer has to trade-off between efficiency
and flexibility for determining the final chip
architecture.
A solution to this problem is to replace the
dedicated hardware by programmable logic that
can be adapted to the protocol requirements (and
its newer versions) in a flexible and reliable way.
The reconfigurable hardware is easily adapted to
new protocol requirements and may offer
solutions optimized for speed, area or power
consumption according to system needs. The

major advantage of a reconfigurable solution is that
the same logic resources can be used for
implementing different functions, depending on the
specific protocol functionality and this can be done
‘on-the-fly’ by exploiting dynamic reconfiguration.
The idea of dynamic reconfiguration is also applied
to dynamic instruction set computers that alter their
instruction set during the program execution.
Generally, there are two major disadvantages on
using reconfigurable hardware. The reconfigurable
hardware costs more than dedicated hardware for
implementing the same set of functions. This
problem can be solved by increasing the reusability
of the hardware resources, that is to share the
hardware resources to more than one functions and
thus to increase the functional density of the device.
The second disadvantage of reconfigurable
hardware is the long reconfiguration time, which in
some cases is unacceptable, especially in dynamic
reconfiguration. The work presented in this paper
deals with this problem by exploiting instruction
caching and dynamic-static instruction partitioning,
depending on the MAC protocol requirements.
Section 2 introduces the conventional network
processor design flow and illustrates the processor
usage in some MAC processors. Section 3
describes the architecture of a new reconfigurable
processor, while Section 4 introduces a
methodology that leads to instruction set
optimization. Section 5 demonstrates the results
obtained by applying the new methodology to
convert a conventional MAC processor into a
dynamic one.

2. MAC PROCESSOR USAGE

The design flow used for designing a MAC
processor is based on formal protocol description
and on hardware/software partitioning [3]. The
partitioning is usually based on the assumption that
critical functions are transferred into hardware,
while functions that require more relaxed timing
can be implemented using microcode.

OPTIMISED RECONFIGURABLE MAC PROCESSOR
ARCHITECTURE

2530-7803-7057-0/01/$10.00 ©2001 IEEE.

An example of a MAC processor design based on
this flow is described in [4]. In this example, an
IEEE802.11 MAC processor was designed based
on an ARM CPU, while the initial processor
architecture was implemented on a development
board using FPGAs for design verification. This
development board was used to evaluate system
performance and to test MAC functions, by
downloading code in the ARM processor. This
process allowed the identification of time critical
functions and architectural bottlenecks, at initial
design stages.
After verifying the design, we used the
development platform to evaluate processor
usage for MAC functions execution. The
evaluation was performed by calculating how
frequently different instructions were used in
order to implement the specific protocol
functions. The same procedure was used to
implement and to evaluate an IEEE802.11-to-
Ethernet bridge. Both systems were based on the
ARM processor core and additional custom
hardware for implementing the any additional
MAC protocols [5], [6]. The evaluation results
are shown in Figure 1 (a) and (b). The
instructions used in both protocols are less then
50% of the instruction set of the ARM processor
and only six of them (ADD, MOV, CMP, LDR,
STR, B) take up to 95% of the total instruction
count, while the rest instructions take less then
5%. These results mean that using the ‘off-the-
shelf’ ARM core a lot of hardware resources of
the final chip are used infrequently or are not
used at all.
A first approach that would lead to hardware
optimisation is to design a processing unit that is
optimised for executing only the instructions
contained in the specific code. This approach is
commonly used to implement Application
Specific Instruction Set Processors (ASIPs). The
disadvantage of this approach is that the
implementation is of limited use. For example,
we could implement a version of the ARM
processor that would be optimised to execute the
previous instructions efficiently, but it would
have limited performance for other protocol
implementations or for future updates of the
same protocol that would require a different
instruction mix.
The approach that has more potential in
implementing flexible medium access processing
systems is based on processors with configurable
instruction set. These processors can load their
instruction sets either dynamically, while the

program is executing (run-time reconfigurable), or
statically, before program execution. Both solutions
are easily adaptable to the requirements of each
protocol, and they have the capability to implement
more complex and specialised instructions
(especially when run-time reconfigurability is
used). Moreover, they reduce the protocol
development time, due to their adaptability and
ease the implementation of the sensitive parts of the
protocol by transferring functions into hardware.
The dynamic approach is the most promising one,
since it offers more functional density as it replaces
instructions at run-time. A dynamic instruction set
processor with instruction caching ([7], [8])
downloads instructions into the reconfigurable
processor, like conventional processors download
instructions into a cache memory. According to the
traditional dynamic instruction set processors,
instruction replacement takes place each time there
is a cache miss. In this paper we present the
application of a dynamic approach in order to
implement medium access processors, which have
dynamic instruction set, compatible with a known
processor (e.g. ARM), and a methodology for
partitioning the instruction set to dynamic and static
subsets, based on statistical analysis and the
specific MAC protocol needs.

��

��

���

���

���

���

���

A
D

D

A
N

D

B
IC

E
O

R

O
R

R

S
U

B

C
M

P

M
O

V

M
V

N

M
U

L

LD
R

S
T

R

S
T

M

M
S

R B

(a)

��

��

���

���

���

���

���

A
D

D

A
N

D

B
IC

E
O

R

O
R

R

S
U

B

C
M

N

C
M

P

M
O

V

M
V

N

M
U

L

LD
R

S
T

R

LD
M

S
T

M

M
S

R B

(b)

Fig. 1: Instruction usage for the IEEE802.11 (a) and

the IEEE802.3 (b) MAC protocols.

254

3. RECONFIGURABLE MEDIUM
ACCESS PROCESSING UNIT

In this paragraph we define the architecture on
which the instruction set optimization
methodology is based. The proposed
reconfigurable architecture is illustrated in Figure
2 and is based on the principles of dynamic
instruction set processors and characteristics such
as: dynamic instructions based on configuration
tables, fixed operand coding, re-locatable
instruction loading and partial reconfiguration of
the hardware resources.
The reconfigurable architecture consists of the
following basic blocks: the instruction fetch and
decoding units and the instruction execution unit,
which consists of the static and the dynamic
sections. The static section consists of
configurable static instructions that are loaded at
power up, while the dynamic section contains a
cache of dynamic instructions that are loaded on
demand. The architecture is completed by an
instruction scheduler, which takes care of the
caching and the dynamic instruction loading. The

basic blocks of the architecture are analyzed below:
The instruction fetch unit is responsible for the
generation of the addresses issued to the memory
for program execution. The instruction fetching
unit of the dynamic processor is similar to the
fetching unit of a conventional processor and
consists of a program counter that points to the
position of the next instruction, an interrupt handler
that issues the appropriate command in case of an
exception and a branch mechanism that calculates
the next program position, when a branch
instruction is executed. The fetched instruction is
latched in the instruction register in order to be
used by the decoding unit.
The decoding unit uses the instruction register to
decode the instructions and to generate the
appropriate signals to the execution unit (for static
and dynamic sections), the fetching unit (branch
instructions) and the scheduler unit. As mentioned
above, the decoding unit uses fixed operand
decoding, which means that the selection of the
operands is not changed at run-time, because it is
encoded in the instructions at compile time.
However, in order to increase flexibility, the

Instruction
Fetching
Unit

3URJUDP�0HPRU\

IOXVK

LQVWUXFWLRQDGGUHVV

%
UD
Q
F
K

,Q
V
WU
X
F
WL
R
Q
V

FRQI�

DGGUHVV

FRQI�

GDWD

RSF�

,QVWUXFWLRQ

'HFRGLQJ

8QLW

'\QDPLF�6HFWLRQ

�([HF��8QLW�

6WDWLF�6HFWLRQ

�([HF��8QLW�

2
S
H
UD
Q
G
�'

H
F
R
G
LQ
J

5
H
J
LV
WH
UV

6
WD
WL
F

0
H
P
R
U\

3
R
UW
V'\QDPLF

5HJLVWHUV

Scheduler

2
S
F
B
7
D
E
OH

2
S
F
�

$
G
G
U�

6
H
J
P
�

5
H
V
R
X
UF
H

7
D
E
OH

&DFKHB7DEOH

5
H
V
R
X
UF
H
V

2SF� LQIR

3URJUDP

FRXQWHU

,QVWUXFWLRQ�5HJLVWHU

,QWHUUXSW

KDQGOHU

%UDQFK

60

$GGUHVV

*HQHUDWLRQ

8QLW

6
F
K
H
G
X
OH
U�
6
WD
WH
�0

D
F
K
LQ
H

,QVWUXFWLRQ�'HFRGLQJ

Fig. 2: The Dynamically Reconfigurable Processor Architecture

255

Static Instructions
Dynamic

Instruct ions

Verif ication

Cost calculat ion
funct ion

Statist ical analysis
of Code

&�&RGH

,QVWUXFWLRQ�0L[

SHUFHQWDJH

&ULWLFDO

)XQFWLRQV

,QVWUXFWLRQ

:HLJKWV

,QVWUXFWLRQ

:HLJKWV

+DUGZDUH

5HVRXUFHV

Part i t ion Algori thm

7UDQVIHU

,QVWUXFWLRQ�6HW

,QVWUXFWLRQ�&RVW

'DWDEDVHV

Fig. 3: Methodology for instruction set optimisation

selected dynamic instruction is able to select any
of the registers or memory ports, by encoding the
selection in the dynamic function. The dynamic
instructions can also use virtual (reconfigurable)
registers that can be backed up/restored from the
memory, each time the dynamic instruction that
uses them is swapped in or out the reconfigurable
array.
The scheduler is a special unit that loads and
replaces instructions from the reconfigurable
logic. The scheduler has a port connected to the
memory that contains the configuration
information and a port connected to the SRAM
based reconfigurable array. The scheduler
contains also: a table (Opc_Table) which
contains the opcodes, the corresponding
addresses in the configuration memory and
resources required by each dynamic instruction, a
table with the available resources in the
reconfigurable logic (Resource_Table) and a
table (Cache_Table) with the dynamic
instructions that are loaded into the
reconfigurable array. The scheduler state
machine works as follows:
1. The opcode of the decoded instruction is

compared to the opcodes of the dynamic
instructions that exist in the Opc_Table. If the

instruction is static, the scheduler goes to the
idle state waiting for the next decoded opcode,
otherwise proceeds to step 2.

2. The opcode of the instruction is compared to the
opcodes contained in the Cache_Table to
determine if the instruction is in the
reconfigurable array. If not, the scheduler stops
normal execution by issuing a HOLD signal and
proceeds to step 3, otherwise it goes to idle
state.

3. In this step the scheduler checks the
Resource_Table to find out if there are available
resources in the reconfigurable array to load the
new instruction. If there are no available
resources, an existing instruction is replaced
according to a replacement algorithm such as
the ones used in caches (random, First-in-First-
out, Least Recently Used - LRU). The load of a
new instruction or the replacement of an
existing instruction causes the Cache and
Resource tables to be updated. As soon as the
reconfigurable array is loaded, the scheduler
deasserts the HOLD signal allowing normal
code execution.

It is obvious that the selection of the static and
dynamic subsets has to be performed in such a way
that minimizes the cache missing effect.

256

4. INSTRUCTION SET OPTIMISATION

Using the dynamic processor presented in the
previous section, we can proceed to instruction
set optimisation methodology that is illustrated in
Figure 3. There are two key points in this
methodology: the function that evaluates the
costs of the various instructions and the
partitioning algorithm that divides the
instructions into dynamic and static. The cost
calculation function takes as input the instruction
weights as extracted:
(a) by the C code of the protocol after statistical

analysis and
(b) by the protocol critical functions as

specified in the first step of the MAC
processor development.

The number and the types of instructions that are
used in the various timing critical paths of the
protocol implementation determine the minimum
size of the dynamic instruction cash and the static
instruction subset. The cost calculation function
extracts instruction weights depending on how
often each instruction is used and how critical are
the functions that contain the specific instruction.
The calculated weights are used by the
partitioning algorithm to divide the instructions
into dynamic and static. The static instructions
are configured at the system power-up and are
not replaceable by other instructions. Dynamic
instructions are replaced at run-time using the
scheme described in the previous section.
The partitioning algorithm takes as input the
hardware resources available and the cost of each
instruction set for hardware implementation. The
outcome of this process is a mix of dynamic and
static instructions that fits into the available
hardware resources and is capable to perform the
protocol functions by minimizing the
performance penalties. The instructions’ cost is
calculated using databases produced after
implementation in a specific technology. The
databases contain information like area, power
consumption and performance (maximum
frequency) and are used by the partitioning
algorithm to evaluate different implementations.
In case a specific static-dynamic partitioning
does not satisfy the critical functions, the
partitioning algorithm performs new instruction
set optimisation using the feedback produced to
recalculate the instruction weights. The process
repeats until all requirements are met. The final
step of the proposed methodology performs the

verification of the system, running the code at the
reconfigurable processor.

5. EXPERIMENTAL RESULTS

In order to demonstrate the use of the new
methodology, we emulated a dynamic version of
the ARM processor used in the medium access
processing systems mentioned in Section 2. The
dynamic ARM processor contains the same
instruction set as its static version, but implements
part of them as dynamic instructions (the
instructions indicated in the statistical analysis) and
contains also a scheduler that executes the state
machine described in Section 3. Each of the
instructions was assigned a resource value that
corresponds to the complexity of the instruction
and an address to the configuration memory that is
connected to the scheduler and stores the
configuration data for each instruction. The
emulation program monitored the processor
performance by calculating the instruction cache
misses in two different cases. In the first case the
partitioning between static and dynamic
instructions changes, while the total resources
remain the same. In the second case, the
partitioning remains the same but the cache size
varies for supporting a different number of dynamic
instructions.
In the first case, the partitioning algorithm divided
the instructions to static and dynamic, initially
using no weights for the instructions (all dynamic)
and then by transferring the instructions with the
higher weights in the static instructions subset. The
weights of the instructions using the static analysis
of code are shown in Table 1.
Partition 1 is based on static analysis results, while
partition 2 uses also protocol execution
information, e.g. how frequently a path or a
subroutine is used. The results for these two
scenarios are shown in Figure 4. Partition 1 gives
its best results for the 8th run (7 static and 10
dynamic instructions). Partition 2, which
approaches the optimum partition, since it uses
information containing the dynamic use of each
instruction, produces better results compared to
partition 1 for almost all runs.
Figure 5 depicts the results produced for different
cache sizes, when 6 static instructions and 11
dynamic are used. We performed 6 runs using total
configurable resources that were 35, 45, 53, 60, 70
and 80% of the static configuration resources. As
shown in this Figure, for cache sizes over 60% of

257

�

���

���

���

���

���

���

���

���

���

��� ��� ��� ��� ��� ���

Fig. 5: Cache miss as a function of cache size
(percentage of total static resources)

Table 1: Instruction Weights

Instr. Static
Weight

Critical
Func.

Weight

Tot. Part.1 Part.2

ADD 0.056 0.02 0.076 8 12

AND 0.004 0.03 0.034 9 11

ORR 0.014 0.03 0.034 10 10

SUB 0.002 0 0.002 14 14

CMP 0.054 0.05 0.104 7 7

MOV 0.213 0.15 0.363 2 1

MVN 0.001 0 0.001 16 16

MUL 0.001 0 0.001 15 15

LDR 0.155 0.17 0.325 3 2

STR 0.212 0.19 0.402 1 6

STM 0.003 0 0.003 13 13

LSL 0.080 0.09 0.170 5 5

LSR 0.039 0.10 0.139 6 4

PUSH 0.010 0.02 0.030 11 8

POP 0.010 0.02 0.030 12 9

B 0.135 0.11 0.245 4 3

SWI 0.001 0 0.001 17 17

the total resources, the cache miss is very low
(and practically does not affect the total
execution time).

6. CONCLUSIONS

This paper addressed the problem of inefficient
resources utilization of MAC processor designs
and presented a reconfigurable processor
architecture and a methodology for optimizing
processor instruction sets by using the

advantages of dynamic reconfiguration. The
presented methodology produces a mix of dynamic
and static instructions that implement the MAC
protocol functions and evaluates different
implementation options for minimizing the required
system resources.

REFERENCES

[1] C-PORT, “C-5 Digital Communications

Processor”, Product Brief, Version 2.0, 1999.
[2] Level One, “IXP1200 Network Processor”,

Advance Datasheet, Revision 278298-001, 1999.
[3] Ivo Bolsens, Hugo J. De Man, Bill Lin, Karl Van

Rompaey, Steven Vercauteren, and Diederik
Verkest, Hardware/Software CoDesign of Digital
Telecommunication Systems, IEEE Proceedings on
Communications, Vol. 85, No. 3, March 1997, pp.
391-318.

[4] Iliopoulos, M., Maniatopoulos, A. and
Antonakopoulos, T., “Design and Implementation
of a MAC Controller for the IEEE802.11 Wireless
LAN”, Journal of Electronics, March 2001.

[5] IEEE Std 802.11-1997: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY)
specification.

[6] ANSI/IEEE Std 802.3-1996: Carrier Sense
Multiple Access with Collision Detection
(CSMA/CD) access method and physical layer
specifications.

[7] Wirthlin, M., Hutchings, B., “A dynamic
instruction set computer”, Proceedings of IEEE
Workshop on FPGAs for Custom Computing
Machines, Napa, April 1995, pp. 99-107.

[8] J.R. Hauser, and J. Wawrzynek, Garp: A MIPS
Processor with a Reconfigurable Coprocessor,
Proc. IEEE Symposium. FCCM, April 1997,
pp.12-21.

�

���

���

���

���

���

���

���

���

5
8
1
�

5
8
1
�

5
8
1
�

5
8
1
�

5
8
1
�

5
8
1
�

5
8
1
�

5
8
1
�

5
8
1
�

5
8
1
�
�

5
8
1
�
�

3DUWLWLRQ��

3DUWLWLRQ��

Fig. 4: Cache misses for different partitions

258

	2001_ICECS_MACProcessor1.pdf
	Reprint
	M. Iliopoulos and T. Antonakopoulos

