
Reprint

From Matlab/Simulink Models to Prototype Implementation:
A Communication Systems Development Environment

 M. Varsamou, P. Savvopoulos, N. Papandreou

and Th. Antonakopoulos

The Nordic MATLAB Conference 2003 – NMC 2003

 COPENHAGEN, DENMARK, OCTOBER 2003

Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright holders. All
persons copying this information are expected to adhere to the terms and constraints invoked by each
author's copyright. In most cases, these works may not be reposted or mass reproduced without the
explicit permission of the copyright holder.

From Matlab/Simulink Models to Prototype Implementation:
A Communications Systems Development Environment

Maria Varsamou, Panayiotis Savvopoulos, Nikolaos Papandreou and Theodore Antonakopoulos

Academic Research Computer Technology Institute - CTI
61 Riga Feraiou Str., 26100 Patras, Greece

Department of Electrical Engineering and Computers Technology
University of Patras, 26500 Rio - Patras, Greece

e-mail:{varsamou, psavvop, npapandr, theodore}@loe.ee.upatras.gr

Abstract

The aim of this paper is to present a flexible and versatile
environment for developing, analyzing and prototyping data
communication and signal processing systems. This envi-
ronment is based on the Matlab/Simulink tools and a recon-
figurable hardware platform that includes reprogrammable
and digital processing circuits. The hardware platform
communicates with the Matlab workspace via a dynamic
data exchange and synchronization mechanism, which en-
ables the interaction between the model running on the Mat-
lab/Simulink and the hardware/software modules developed
by the user. This development environment provides a flexi-
ble test-bench that facilitates the gradual implementation of
a high-level system model to an actual prototype.

1. Introduction

Prototyping of communications systems is a demanding
task that involves several discrete design steps. Initially,
an analytical model of the system has to be developed, the
various algorithms have to be designed and the system be-
havior needs to be verified. As a next step, the respective
prototype which combines a number of hardware and soft-
ware functional modules has to be implemented and tested
in terms of its consistency to the specifications of the analyt-
ical model. Due to the complexity of their algorithms, mod-
ern communications systems need long development and
testing time for the completion of the prototype. Regard-
ing the modeling and testing of a communications system,
Matlab/Simulink tools offer a high performance simulation
environment that supports the development and analysis of
complex multi-domain models.

In this paper, we discuss an environment that provides an
effective design and test approach, by exploiting the high-

performance simulation and modeling capabilities of the
Matlab/Simulink tools and the flexible modular hardware
architecture of a prototype platform. The design methodol-
ogy involves the use of the Matlab/Simulink tools for build-
ing and verifying the analytical model and then mapping
selected system blocks into hardware and/or software mod-
ules on the prototype platform. These blocks are being re-
placed by special library functions that are responsible for
the communication and synchronization with their circuit
counterparts. Throughout the development process we can
take advantage of the same Matlab-based testing tools in or-
der to verify the proper behavior of the various integration
steps. This procedure continues until the high-level model
functions have been integrated into a complete prototype.

The rest of this paper proceeds as follows: In Section
2 we describe the prototype design approach. In Section 3
the hardware platform and its interconnection with the Mat-
lab/Simulink tools is presented, while in Section 4 specific
synchronization issues between the simulation tools and the
digital processors are discussed. Finally, in Section 5 an
application example that highlights the functionality of the
proposed environment is presented.

2. The Prototype Design Methodology

The prototype design methodology, as it is shown in
Figure 1, is based on a top-down approach that defines
how a high-level system model, developed using the Mat-
lab/Simulink tools, can be transformed to a prototype.

During the initial phase of the proposed design approach,
the system specifications are defined and all necessary in-
formation about the system architecture, its functionality
and complexity is collected. Based on this information, new
algorithms are developed and a high-level Matlab/Simulink
model is built, composed by standard library blocks and
custom functions [1]. The model’s functionality is validated

System Partitioning

Simulation Model

User

Functions

Prototype System

Simulink

Blocks

System Specifications

Algorithm/Data Exploration

MATLAB

Modules

DSP

Algorithms

Co-simulation

Validation

Analysis

Design

Verification

Figure 1. The prototype design methodology.

and optimized through simulation and a first estimation of
the implementation complexity is possible.

After the model design has been completed, various sub-
modules are progressively mapped into hardware/software
components on the hardware prototype platform. Commu-
nication between the high-level simulation model and the
hardware platform is accomplished through data exchange
and synchronization mechanisms. The mixed-type system
is verified using the same testing tools and procedures that
have been used to validate the high-level model. This ap-
proach allows the user to perform low level debugging,
while simulation results are being collected and compared
with the respective results of the high-level model. Opti-
mization is performed for every submodule of the commu-
nication system individually and at the end, a fully func-
tional system that is consistent with the initial specifications
has been developed.

3. The Hardware Platform Architecture

In order to implement a low-cost and flexible proto-
type environment, we developed a hardware platform that is
based on reprogrammable logic and a DSP processor. Inter-
communication between the hardware platform and a com-
puter, that hosts the Matlab/Simulink tools, is performed via
the PCMCIA interface. A complete development environ-
ment consisting of two PCs with two hardware platforms

is demonstrated in Figure 2. This structure corresponds to
a pair of communicating devices and provides the capabil-
ity of designing flexible component-level architectures, thus
enabling the implementation and verification of several end-
to-end communication applications.

Each hardware platform is based on the high-
performance floating point TMS320C6711 [2] processor of
Texas Instruments with 900 MFLOPS processing power,
an analog front-end that includes two ADC and two DAC
channels, and an FPGA module with 8 kwords of exter-
nal Dual Port RAM. The FPGA’s internal logic implements
the PCMCIA interface and extends the available mem-
ory space that can be accessed by the Matlab workspace
via an appropriate I/O device driver. The data exchange
and synchronization between the model and its blocks
that are mapped into the prototype platform, is achieved
through Matlab/Simulink custom functions that associate
workspace variables with memory locations and structures
at the interface memory space. The DPRAM contains all
necessary user and control data required for the efficient
implementation of the mixed-type model. In the current
version of the prototype platform, all subsystems are im-
plemented as DSP functions that are synchronized by the
Matlab environment which is the master throughout these
transactions. Figure 3 shows the actual hardware prototype
set-up used in this work.

For more demanding applications, the presented proto-
type platform can be easily extended in order to include
additional hardware modules that may be accessed by the
Matlab/Simulink functions using the same memory space.
This is achieved by using internally some dedicated I/O
ports. Such an extension enhances the environment’s flexi-
bility and enables the exploration of more elaborate designs,
as resource demanding parts of a communication or signal
processing model may be substituted by efficient hardware
implementations.

4. Synchronization Issues

In a mixed-level design that includes a Matlab/Simulink
model, whose certain parts are implemented as DSP func-
tions in the hardware platform, synchronization issues arise
that play a key role in the effective and proper prototyp-
ing approach. Synchronization has two different aspects:
synchronization of the several functions performed at the
same DSP processor, and synchronization that is related to
the communication and data exchange between the Matlab
workspace and the DSP environment.

4.1 Multi-threading in the DSP environment

The progressive substitution of several Simulink blocks
by their respective DSP implementations, results in the de-

DSP
Transceiver 1

FPGA

Analog
Front
End

PCMCIA

Interface

Host computer

A/D

D/A

Matlab
Dual Port

RAM

DSP Peripheral

 Interface

FPGA Board

DSP

DSP Peripheral

 Interface

FPGA Board

FPGA

Dual Port

RAM

Analog
Front
End

A/D

D/A

PCMCIA

Interface

Host computer

Matlab

Transceiver 2

Figure 2. The architecture of the prototype environment.

Figure 3. The hardware prototype set-up.

velopment of DSP functions that perform a number of dif-
ferent functions simultaneously, often in response to ex-
ternal events, such as the availability of data or the pres-
ence of a control signal. These functions are called threads
and multi-threaded programs run on a single processor by
allowing higher-priority threads to preempt lower-priority
ones and by allowing various types of interaction between
threads, including blocking, communication, and synchro-
nization. The used DSP processor supports multi-threading
applications through DSP/BIOS that is supplied along with
the Code Composer Development Suite [3]. DSP/BIOS is a
scalable real-time kernel, which is designed for applications
that require real-time scheduling and synchronization, host-
to-target communication, or real-time instrumentation. It
provides preemptive multi-threading and system-level ser-

vices such as memory management, communication mech-
anisms and interrupt handling. Using these kernel features,
distinct submodules of a Matlab/Simulink model can be
mapped to independent or cooperative DSP functions that
are executed concurrently.

4.2 Synchronization between the Matlab/Simu-
link model and the hardware platform

Synchronization should be achieved not only among dis-
tinct DSP functions, but also between the Matlab/Simulink
functions and the DSP modules, in order to ensure that the
data-flow through the model’s different stages is consistent
with the system’s specifications.

The complexity of the synchronization problem varies

depending on the real-time data exchange requirements be-
tween the model and the hardware platform. The simplest
case is when a certain block of a Matlab/Simulink model,
like an FIR filter, is replaced by a respective DSP func-
tion. Then, synchronization is achieved by a hardware con-
trol mechanism, or by control information exchanged us-
ing the Dual Port RAM. Matlab produces the data to be
transferred to the DSP module, and then seizes its execu-
tion until the response is received. A different scenario is
to use Matlab/Simulink for monitoring the behavior of a
communication or signal processing system implemented
on the hardware platform, via high complexity blocks, such
as FFT-Scopes or Averaging-Spectrum-Analyzers. In this
case, blocks of information should be collected periodically
by the Matlab model so that they can be processed and pre-
sented. To make that feasible, a more sophisticated proce-
dure is defined, involving observation of control parameters
and buffer manipulation by both Matlab and DSP.

The most challenging synchronization issues arise when
real-time data exchange between Simulink and DSP is
needed. For example, when a communication channel
with certain characteristics is emulated and a Simulink
application includes modulators/demodulators and/or en-
coders/decoders. It is obvious that in this case, there must
be a continuous data-flow from Matlab to the hardware plat-
form and vice versa, so that realistic emulation takes place.
The difficulty in this case stems from the fact that although
the hardware platform constitutes a hard real-time system,
the simulation times in Simulink cannot be explicitly deter-
mined since they depend on the complexity of the model,
on the computer’s processing power and the data exchange
rate achieved at the PCMCIA interface. As a consequence,
there is an upper bound to the maximum data transfer rate
that can be achieved between the high-level model and the
hardware platform.

On the other hand, when the burden of the calculations
lies on the DSP, leaving just a light model in Simulink,
which therefore might be too fast, an adaptation to the pre-
defined rate is feasible via a custom block adding variable
delay to the simulation loop. Continuous data exchange is
accomplished through an elastic circular buffer, which is
placed in the Dual Port RAM and is shared by both Matlab
and DSP, as it is shown in Figure 4. Due to the real-time
nature of the data transmission on a communication chan-
nel, the buffer should never be overflown either by Simulink
or by DSP, since in this case, inaccurate simulation results
will be obtained. This requirement along with the fact that
the buffer is accessed by two applications on the same time
necessitates the existence of a well-defined buffer manipu-
lation process. Apart from the buffer itself, there are two
pointers in the DPRAM, one that is updated by Matlab and
addresses the last location that has been accessed by the
Matlab and another that is updated by the DSP and ad-

Simulation Model

PCMCIA I/O Interface Logic

Buffer In Buffer Out

Control/

System

Param

Circular

I/O Buffer

Pointers

Prototype Hardware Platform

Process
N

Process
M

DSP

Control/

System

Param

S-function
M

S-function
N

DPRAM

Figure 4. Runtime communication between
Simulink and DSP modules.

dresses the last location that has been accessed by the DSP.
A custom Simulink block was developed, which ensures
that the buffer never encounters underflows or overflows.
During simulation, the Simulink block observes the differ-
ence between these two pointers, thus determining the opti-
mum rate at which the buffer has to be accessed. Depending
on the size of this buffer, the block adapts the Simulink’s
processing time accordingly.

5. Application Example

In this section we present an example that demonstrates
the applicability of the presented design methodology and
hardware prototype platform in the development and im-
plementation of a digital communications system. Figure 5
shows a general block diagram of a QAM (Quadrature Am-
plitude Modulation) [4] communication system that con-
sists of the transmitter, the far-end receiver and an AWGN
channel emulator, used to add Gaussian noise to the trans-
mitted signal. The transmitter consists of the binary random
source generator, the QAM constellation encoder and mod-
ulator and the Tx-filter used to shape the output signal. The
reverse functions are executed at the receiver, in order to
demodulate the incoming signal and extract the binary data
information.

Following the design methodology presented in Figure
1, we have decomposed the system under development into
functions that are executed in the Matlab/Simulink environ-

Data in
Constellation

encoder

QAM

modulator

BER
Constellation

decoder

QAM

demodulator

Rx

filter

D/A

A/D

AWGN

Tx

filter

SNR

Matlab/Simulink Matlab/SimulinkDSP1 DSP2

Figure 5. The functions of the QAM Modulator-Demodulator ex perimental set-up.

ment and functions that are executed in the DSP device of
the prototype platform. In particular, the basic blocks of the
transmitter and receiver are developed in Matlab/Simulink
functions and a custom library is used to transfer the out-
put and input samples to/from the DSP device, where the
D/A and A/D conversions are performed. A second DSP
platform is used to add AWGN to the transmitted signal.
The noise level is determined “on-the-fly” by the user via
the Matlab/Simulink interface with the DSP platform. In
this second Matlab/Simulink platform, some testing mod-
ules are used for measuring the quality of the input and
output channel signals. The complete experimental set-up
is the one presented in Figure 3. Using the data and syn-
chronization interface between the Matlab/Simulink envi-
ronment and the prototype platform we can exploit the sim-
ulation tool’s build-in functions (e.g. signal and spectrum
scopes, scattering plots, BER tester) in order to provide
real-time visualization of the communications system per-
formance.

The mixed-level example of Figure 5, demonstrates the
development of a full communications system, consisting
of Matlab/Simulink models and scope functions along with
hardware prototype circuits. Moreover specific modules of
the QAM transmitter and receiver can be further replaced by
hardware/software counterparts, in order to develop a com-
plete QAM transmitter/receiver in the DSP platform.

6. Conclusions

In this work we presented a versatile development envi-
ronment for prototyping a communications system starting
from its Matlab/Simulink model and exploiting a flexible
hardware platform. The presented methodology enables the
designer to start the development of a system from build-
ing up a high-level simulation model, perform extensive
test and verification and continue the road-map to the final
prototype by substituting various system submodules with

their respective hardware/software implementations on the
prototype platform. The key of this approach is that the
same testing procedures used for verifying the model can
be reused for testing the proper functionality of the proto-
type system. Furthermore, this environment can be used for
educational purposes on system modeling, verification and
implementation and for demonstrating the basic aspects of
the communication theory as well.

References

[1] The Mathworks Inc., Writing S-Functions, Revised for
Simulink 5.0 (Release 13), July 2002.

[2] Orsys GmbH., User’s Guide Micro-Line C6122CPU/
C6711CPU/ C6712CPU, High Performance Digital Signal
Processor Family, Rev 4.02, Mar. 2003.

[3] Texas Instruments, Inc., TMS320 DSP/BIOS User’s Guide,
Nov. 2001.

[4] F. Xiong, Digital Modulation Techniques. Norwood: Artech
House, 2000.

