
Reprint 
 
 
 
 
 
 

 
 
 

xDSL Systems Prototyping using a Flexible Emulation 
Environment 

 
 N. Papandreou, M. Varsamou and T. Antonakopoulos 

 
 
 
 
 
 
 
 
 
 

The 14th IEEE International Workshop on Rapid System 
Prototyping - RSP'03 

 
   SAN DIEGO, CA, JUNE 9-11, 2003 

 
 
Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical 
work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons 
copying this information are expected to adhere to the terms and constraints invoked by each author's 
copyright. In most cases, these works may not be reposted or mass reproduced without the explicit 
permission of the copyright holder. 



xDSL Systems Prototyping using a Flexible Emulation Environment

Nikolaos Papandreou
Academic Research

Computers Technology Institute
61 Riga Feraiou Str., 26100 Patras, Greece

npapandr@cti.gr

Maria Varsamou, Theodore Antonakopoulos
University of Patras

Department of Electrical Engineering
26500 Rio, Patras, Greece

{varsamou, theodore}@loe.ee.upatras.gr

Abstract

In this paper we describe the methodology and archi-
tecture of a flexible modular environment for prototyping
data transmission systems and its application on xDSL sys-
tems. The development environment is based on custom and
commercially available software tools and a custom hard-
ware emulation platform for mapping the basic data-pump
modules of xDSL systems into hardware/software functional
modules. The road-map from a high-level xDSL system
model to the actual prototype is based on the progressive
substitution of high-level submodules of the initial model
with their respective hardware/software counterparts, and
their integration into a complete functional system. A li-
brary of custom blocks is used for data exchange and syn-
chronization between the high-level model and the emula-
tion platform, and for real-time visualization of the critical
parameters of the emulated system as well. The application
of the proposed development environment in the implemen-
tation and testing of an emulator of a bundle of DSL lines
and of a centralized bit-loading algorithm for multicarrier
ADSL systems is also described.

1. Introduction

Prototyping of complex communication systems in-
volves a number of concise and discrete design steps, start-
ing from the development and verification of the analytical
model up to the implementation of the corresponding sys-
tem into a prototype that combines multiple hardware and
software functional modules. The prototype system has to
be consistent with the functional requirements of the ana-
lytical model and further determine an optimized and cost-
effective solution. Modern digital subscriber line (DSL)
technology systems [1], [2] involve complex design archi-
tectures, in digital and analog domains. Sophisticated sig-
nal processing algorithms are used for implementing the
basic data-pump operations [3], [4] increasing the data-

load and processing power requirements for the physical
circuits that implement these operations. Such complex-
ity introduces long development and testing times for the
complete prototype system. On the other hand commer-
cial, high-performance simulation tools facilitate the de-
velopment and analysis of complex multi-domain models
via off-the-shelf library modules that can interoperate with
application-specific, user-defined functions. Moreover, ver-
ified simulation models that correspond to standardized in-
dustry protocols are usually offered enabling the fast evalu-
ation of new algorithms.

In this paper we present the methodology and archi-
tecture of a flexible modular environment for prototyping
various types of data transmission systems and we focus
on xDSL systems and specifically on asymmetrical digi-
tal subscriber line (ADSL) systems. The proposed envi-
ronment combines the high-performance simulation capa-
bilities of a commercially available simulation tool with a
flexible hardware platform and provides a rapid prototyping
approach that transforms simulation blocks into component
level circuits, thus building a mixed high-level analytical
and low-level circuit/microcode model. The road-map from
the xDSL simulation model to the actual prototype is based
on the progressive substitution of the top-level submodules
with their respective hardware counterparts and their inte-
gration into a complete functional system. A library of cus-
tom blocks is used for data exchange and synchronization
between the high-level model and the emulation platform
and for real-time visualization of the critical parametersof
the emulated system. The proposed environment offers a
rapid prototyping approach that reduces the total develop-
ment time, since it provides a direct link between the pro-
totype hardware system and the simulation tool, so that the
high-level performance analysis can also be exploited for
assisting the testing of the implemented prototype.

Section 2 describes the used methodology for rapid pro-
totyping of xDSL communication systems and discusses the
design steps from the high-level analytical model to the low-
level prototype system. Section 3 describes the architecture



High-Level

Simulation Model

User

algorithm

performance

testing

Algorithm

optimization

Low-Level

Prototype System

Library

blocks

System-level

optimization

Specification Capture

gradual subsystem

HW/SW mapping

data-path monitoring

microcode

and HW

modules

Figure 1. System prototyping methodology

of the design environment and highlights its flexibility and
modularity in prototyping a complete data transmission sys-
tem. Finally, Section 4 presents two examples that demon-
strate the application of the proposed methodology on the
development of ADSL systems.

2. The Prototyping Methodology

The top-down prototyping methodology is based on a
number of discrete steps that determine how a high-level
system model is transformed to the actual system prototype.
Figure 1 describes the top-down methodology for prototyp-
ing a communication system.

As the first step the formulation of the system specifica-
tions is considered. This step supplies the necessary infor-
mation regarding system functionality and implementation
restrictions, and enables the detailed investigation of the
system complexity from the early beginning of the design
process. At the next step a software tool1 is used for build-
ing a simulation model via off-the-shelf library blocks and
user-defined modules. The user-defined modules imple-
ment application specific functions and custom algorithms
at a high abstraction level. Simulation is used for validating
the system’s functionality according to the initial specifi-
cations and for estimating its performance under different
data sequences. Moreover, simulation results provide the
means for optimization of the model subsystems and study
of various aspects of the system architecture. This step also

1In our system we use the MATLAB simulation environment for sys-
tem modelling.

Step 1:

library
blocks

test
performance

HW
Platform

evaluate
prototype

High-Level Simulink model

Step 2:

validate
subsystem

High-Level Simulink model

Step 3:

High-Level Simulink model

library
blocks

library
blocks

HW Interface

Interface Driver

Interface Driver

HW Interface

HW
Platform

Figure 2. Progressive substitution of simula-
tion blocks with emulator’s submodules

includes the optimization of custom algorithms and their in-
tegration in the general system architecture, in order to im-
prove the overall system performance. After the high-level
simulation model has been developed and its functionality
has been verified, the next step is to map selected system
components into hardware and/or software modules.

Figure 2 describes the progressive substitution of sim-
ulation blocks with their hardware/software counterparts.
Communication between the simulation tool and the emu-
lation platform through data exchange and synchronization
enables the integration of the top-level design and the low-
level circuit components into a complete functional system.
The new mixed-level model is examined through simulation
tests that now reflect also implementation details. Low-level
data-path debugging along with the top-level simulation re-
sults provide an overall verification process for the system
prototype. The hierarchical process presented in Figure 1
describes a modular and flexible environment for prototyp-
ing a communication system. The high-level simulation
model is directly interfaced with the low-level hardware



prototype, thus enabling the design and testing of sophis-
ticated algorithms into hardware and/or software IP cores.
Moreover the top-down system data-flow (see Figure 2) acts
also as a complete test-bench for the prototyped circuits.
Optimization is performed for each component individually
as well as for the complete system. Use of reprogrammable
devices (FPGAs) along with floating point DSPs in the pro-
totype platform provides the flexibility to design a low-level
architecture that is application dependent. Reconfiguration
of the hardware architecture can be realized cost and time
effectively during the optimization and verification stepsof
the top-down prototype process.

3. The Emulator’s Architecture

In order to have a low-cost, expandable and flexible em-
ulation environment, we developed a hardware platform
that is based on reprogrammable and reconfigurable de-
vices (FPGAs and DSPs). Figure 3 demonstrates the en-
vironment for developing and prototyping a communica-
tion system. The hardware platform is based on two FP-
GAs and two DSPs, which are interconnected using a mesh
topology. This topology provides the capability to design
a flexible component-level architecture that corresponds to
the architectural requirements of each application. In the
current prototype version, we used Virtex-II FPGAs, hav-
ing 2 Million gates in total, while as a DSP we used the
high-performance floating point TMS320C6711 processor
with 900 MFLOPS processing power. This configuration
enables the development of complex systems and the ex-
ploration of more efficient designs. The platform expansion
capability based on the structure depicted in Figure 3 in-
creases the overall design flexibility. For applications with
high demand in system resources, the platform can be eas-
ily extended via the mesh topology to include additional de-
vices (FPGAs and/or DSPs).

The high-level simulation blocks are physically assigned
to programmable logic and/or DSP circuits and are mapped
into HW and/or SW modules of the system architecture. In-
terconnection between the high-level simulation model and
the low-level circuits is performed via a custom FPGA mod-
ule, that allows concurrent data exchange between the sim-
ulation model and the various prototyped submodules. The
hardware emulator communicates with the host computer
using the PCMCIA interface. Data exchange is performed
using a dual-port memory that contains all necessary user
and control data for the mixed-model data-flow (see Figure
2).

The mixed-model, which is based on high-level simula-
tion blocks and component-level prototype modules, repre-
sents a complete functional system that combines model-
level performance simulation and implementation-level de-
bugging. In particular, commercial real-time debugging

tools such as the Code Composer of TI and the Chip-
Scope of XILINX provide the essential means for inves-
tigating the details of the implementation and optimizing
the hardware prototype. On the other hand, complex build-
in functions provided by the simulation environment, in-
cluding FFT-Scope, Averaging-Spectrum-Analyzer, Cross-
Correlator and more, enable the run-time visualization of
system parameters that would otherwise require a more
complex and expensive setup.

4. Application Examples

In this section we present two examples that demonstrate
the application of the proposed methodology on prototyping
ADSL system components. The first example demonstrates
how the emulation environment can be used for designing
and testing an emulator of a binder of xDSL lines, while the
second example shows how a bit-loading algorithm of an
ADSL system is prototyped and tested.

4.1. xDSL binder-loop emulation

xDSL systems use the twisted-pair cables’ infrastructure
for connecting a modem at the user premises with a modem
at the central office (CO). There is a bundle of lines con-
nected at the CO, and each line is affected by noise gener-
ated by the other lines due to crosstalk interference. There
are several models in the literature that describe how this
noise is introduced, based on measurements of various in-
stallations. When new xDSL modems are under develop-
ment and testing, there is the need to have a real-time xDSL
binder emulator that can reliably emulate the performance
of a real binder. That means that the xDSL binder emu-
lator has to be parameterized in terms of number of lines,
their lengths, the type of transmitted data (HDSL, ADSL,
T1 etc.), their transfer function, crosstalk generated noise
etc.

In this example, we describe the development of a pro-
totype of such an xDSL binder-loop emulation system, us-
ing the previously described methodology. The emulator
consists of a high level model that is used for defining
the binder’s characteristics and the hardware platform for
real-time emulation of the line performance, especially the
crosstalk interference. This emulation system can be used
as a testing equipment for evaluating the performance of
ADSL modems operating over subscriber loops that share
the same binder. Figure 4 presents the binder-emulation
setup.

We assume a binder ofM modems and we discuss only
the issues of the downstream transmission in an ADSL line,
although the emulator supports full-duplex operation. An
external analog front-end (AFE) board is used that performs



DSP

� �
� �
� �� �High-Level Simulation Model

User
defined

Run-Time SimulationLibrary Blocks Library
Blocks

Host Interface driver

HW module

RTL-level debugging

FPGA FPGA

DSP

DSP

Expansion

Capability

SW module
code-level debugging

Prototype Hardware Platform

PCMCIA
IF

Figure 3. Modular environment for prototyping a communicat ion system

all necessary A/D conversions as well as the required filter-
ing functions in order to produce the discrete samples of the
signals that are transmitted into the DSL line. These sam-
ples are supplied to the hardware emulator platform where
an FFT module is used for transforming the signal into its
frequency components. The distortion inserted due to the
DSL interference environment is emulated using the ana-
lytical model that is briefly explained below.

Assuming aN -point FFT, we denote asXk=1:M theN -
point FFT block of the transmitted signal for thekth mo-
dem, which is the modem of interest. The received sig-
nal’s FFT-block is denoted asYk=1:M andUk is used for the
AWGN random process. Denoting asHk,k the loop trans-
fer function of thekth modem and asHi,k(i6=k) the far-end
crosstalk (FEXT) transfer function, that represents the in-
terference generated from the signals of theith modem, the
following relation reflects the binder interference environ-
ment [5].

Yk = Hk,kXk +

M∑

i=1,i6=k

Hi,kXi + Uk (1)

Near-end crosstalk (NEXT) has been neglected, assum-
ing that the ADSL modems use frequency division for mul-
tiplexing downstream and upstream traffic [1], although the

analysis can be easily extended to include also NEXT in-
terference. Figure 4 shows a graphical description of the
DSL interference environment. Implementation of (1) is re-
alized using real-time calculations (e.g. for applying the
transfer function of the channel of interest to its input data)
and pre-stored signal values (e.g. for the transfer func-
tion of crosstalk) by exploiting the modular mixed-level de-
sign capability of the prototyping environment presented in
Section 3. The loop and crosstalk transfer functions are
calculated based on analytical expressions [6]. TheseN -
point components are pre-stored in the system and form a
database for all standard test-loops [3]. The crosstalkXi

and noiseUk components are provided to the emulator from
the high level traffic generator. These components are cal-
culated via analytical simulation models, which in partic-
ular reflect the disturber’s xDSL technology specifications.
Figure 4 shows an example of the basic blocks comprising
the simulation models. The disturber’s transmitter consists
of a Bernoulli random data generator followed by the en-
coding/modulation and filtering function blocks based on
the specifications of the DSL technology standards. These
blocks create the signals that generate the crosstalk to the
line of interest. AnN -point FFT block is used for gen-
erating the crosstalk components of (1). AWGN compo-
nents are calculated in a similar manner based on the noise-



AFE

Prototype Platform

External

AFE Board

Central

Office

Customer

Premises

IFFT

External

AFE Board

AFE

Standard

Test-Loops

Library

Run-Time
DataBase

DSL

Interference

Environment

IFFT

FFT

Host

IF

Encoder/
Modulator

N-point
FFT

Bernoulli

Generator

...01011...

DSL

Technology Tx-Filtering

PSD
Shaping

AWGN

Generator

N-point
FFT

Disturber Model Background Noise Model

H
k,k

H
1,k

H
2,k

H
M,k

X
1

X
2

X
k

X
M

Y
k

U
k

FFT
DSL

Binder - Loop

Emulator

Figure 4. DSL binder-loop emulator

level of the test procedure. Run-time emulation of (1) is
achieved by means of asynchronous data transfer from the
host-computer to the binder’s emulator. Using a FIFOs
structure of size much larger thanN , all operations involved
in (1) are performed within the measurement time-base. For
this purpose, the crosstalk and noise components are pre-
calculated and pre-stored in files and FIFOs are used for
controlling the transfer of data to the emulator. Figure 5
presents the implementation details of (1).

Based on the architecture of the hardware platform de-
picted in Figure 4, the calculations involved in (1) are as-
signed to the high-performance floating-point DSP devices,
while the input/output FFT operations are implemented in
the FPGAs using custom optimized HW cores. The output
samples are finally fed to the second AFE board at the out-
put of the emulator for D/A and filtering operations. The
signal is next supplied to the modem at the receiver’s side.
The DSL binder system was originally developed in MAT-
LAB using simulation models for the downstream ADSL
transmitter and receiver circuits as well as for the binder
environment. The hardware implementation of the DSL
interference emulation functions was tested and validated
through the mixed high-level model and low-level compo-
nent simulation process described in Section 2.

The described binder emulator provides an efficient test-
ing tool for emulating the crosstalk interference environ-
ment replacing long cables and noise injection circuits.
Moreover it can be used as worst-case crosstalk emulation
for performance evaluation of single-pair ADSL systems.
In this case the power spectral density of the various dis-
turbers is modelled based on well-defined expressions [6].
Programmability of the background noise level as well as
of the type of the crosstalk disturber provides an appealing
option of the system.

4.2. Bit-loading control

In multicarrier modulation (MCM) systems the channel
spectrum is decomposed into a set of independent nar-
rowband subchannels [7]. ADSL modems use a form of
MCM, known as discrete multitone (DMT). In DMT, the
transmitter power budget, and consequently the achievable
data rate, is distributed among the discrete frequency bands
based on the signal-to-noise ratio (SNR) of each subchan-
nel. The scheme used to assign power and bits is known as
bit-loading (BL) algorithm, and in general there exist two
types of algorithms - those that try to maximize data rate
and those that try to maximize performance at a given data



1

N

Standard
Test-Loops
Database

1 N

X
k

H
k,k

1

N

1

N

1

N

Crosstalk
Models

Database

FIFO

H
i,k

1

N

FIFO

X
i

Y
k

U
k

In

Out

Noise and Crosstalk Data

I
F
F

T

F

F
T

Figure 5. The crosstalk interference model

rate. Both algorithms use the estimations of the subchan-
nel SNRs based on measurements during the modem ini-
tialization phase. In subchannels with higher SNR levels,
more bits are allocated. Many optimal or sub-optimal al-
gorithms are reported in the literature for computing the bit
and power allocation profiles of a single multicarrier link
[8], [9]. Recently the development of methods for coordi-
nation among the MCM modems sharing the same binder
in order to improve the binder-system performance has be-
come an appealing challenge [10], [11]. In this example,
we describe the prototype of a module that implements the
BL algorithm for ADSL systems, using the modular envi-
ronment described in section 3. The BL module is imple-
mented as an independent SW core that calculates the bit
and power profiles based on the channel conditions. The
initial profiles are generated during link establishment and
specify the encoding and decoding process of transmission.
On the other hand, a significant increase in the noise level
will force the system to re-evaluate its profiles, in order to
maintain its QoS. In both cases, the BL module uses the es-
timated SNR values for each subchannel in order to utilize
efficiently the available spectrum. These values are stored
in memory tables and along with the transmission param-
eters including total power-budget, power spectral density
(PSD) mask, system-margin and target-rates define the BL
algorithm input-data.

Figure 6 describes the BL prototyping system. The high-
level model simulates a complete ADSL transmission link
including the transceiver’s data-pump functions, as defined

in [3], and the DSL interference channel described in the
previous section. The transmission is based on bit and gain
tables whose values are read during the simulation run-time.
System performance is examined by means of bit-error-
rate (BER) and SNR degradation, using custom simulation
blocks. The BL mechanism is implemented in the prototype
platform as an independent module. Initialization or up-
date of the BL profiles is controlled by the device controller,
the soft IP MicroBlaze processor core. Communication be-
tween the hardware platform and the high-level model is
performed via the PCMCIA interface. The hardware ar-
chitecture is based on the CoreConnect bus. The complete
system is tested through run-time change of channel con-
ditions in the high-level simulation environment. The new
subchannel SNR values are calculated and transferred to the
HW platform. In case of performance degradation the BL
module re-evaluates the bit and gain profiles which are fed
back to the high-level model. The new profiles will affect
the transmission at the next simulation step. Verification
of the proper system response, after the channel change, is
realized using the high-level simulation tools by examina-
tion of transmission performance before and after the ap-
plication of the BL mechanism. The described BL proto-
type consists an independent soft-core module that can be
embodied in a complete multicarrier system. The method-
ology used for the BL prototype can be extended for de-
veloping a centralized mechanism that controls the bit and
power profiles of a system of MCM modems that share the
same binder. In that case the individual loop and crosstalk
transfer functions, described in the previous section, need to
be known and stored in memory tables of the BL module.
Moreover the high-level simulation blocks can be further
decomposed into hardware or software modules in order to
develop an ADSL prototype. The modular environment of
Figure 3 enables the gradual implementation of the com-
plete data-pump as well as the investigation of the architec-
tural details, based on the embedded HW and SW cores.

5. Conclusions

In this paper we have presented a rapid prototyping ap-
proach that can be used for developing and testing data
transmission systems. The used methodology allows the
combination of high-level system models along with pro-
totyped hardware and software components in a flexible in-
tegrated environment. The main advantage of the proposed
approach is that the system designer can start from a high-
level description of the system, develop its testing and veri-
fication procedures and reuse the same environment for test-
ing the actual prototype. This can be achieved by progres-
sively replacing the various modules of the high-level model
with their respective HW/SW counterparts and then use the
same test sequences for verifying their proper functionality.



D
a
ta

 I
n


F
ra

m
e
r

E
n
c
o
d
e
r

D
M

T


m
o
d
u
la

to
r

ADSL transmitter

T
x
-F

ilt
e
ri
n
g


D
a
ta

 O
u
t

F
ra

m
e
r

D
e
c
o
d
e
r

D
M

T
 d

e
 -


m

o
d
u
la

to
r

ADSL receiver

R
x
-F

ilt
e
ri
n
g


Channel
Loop

Run-Time
Conditions

Programming

New SNRs
calculation

Interface Driver

BL
profiles

BL
profiles

BER Tester

Dataflow
Controller

FIFO
IN

FIFO

OUT

PCMCIA Interface

BL
Algorithm

microProcessor

SNRBitGain

BL Tables

Custom Logic

Figure 6. The bit-loading algorithm implementation module

6. Acknowledgments

This work was partially supported by the
“Karatheodoris” R&D program of the University of
Patras and Project 00BE33 entitled “Digital Subscriber
Lines Technology” of the Greek Ministry of Industry. The
authors would like to thank Mr P. Savvopoulos, Mr T.
Arampatzis and Mrs D. Anastasiadou for their valuable
contributions during the prototype development.

References

[1] T. Starr, J. M. Cioffi, and P. J. Silverman,Understanding
Digital Subscriber Line Technology. Upper Saddle River,
NJ: Prentice-Hall, 1999.

[2] W. Y. Chen,DSL: Simulation Techniques and Standards De-
velopment for Digital Subscriber Line Systems. Indianapo-
lis, IN: Macmillan Technical Publishing, 1998.

[3] “Asymmetrical Digital Subscriber Line (ADSL)
Transceivers,” ITU - G.992.1, July 1999.

[4] “Very-High-Bit-Rate Digital Subscriber Line (VDSL)
Metallic Interface: Part 1: Functional requirements and
common specification. Part 3: Technical specification of a
multi-carrier modulation transceiver,” ANSI - T1E1.4/2000-
013R1, 2000-009R3.

[5] G. Taub̈ock and W. Henkel, “MIMO Systems in the
Subscriber-Line Network,”The 5th International OFDM-
Workshop 2000, Hamburg, Germany, pp. 18.1-18.3.

[6] “Spectrum Management for Loop Transmission Systems,”
ANSI Std. T1.417-2001, Jan. 2001.

[7] J. M. Cioffi, “A Multicarrier Primer,” T1E1.4/91-159, Nov.
1991.

[8] A. Leke and J. M. Cioffi, “A maximum rate loading al-
gorithm for discrete multitone modulation systems,”IEEE
GLOBECOM ’97, Nov. 1997, pp. 1514-1518.

[9] R. V. Sonalkar and R. R. Shively, “An Efficient Bit-Loading
Algorithm for DMT Applications,” IEEE Commun. Lett.,
vol. 4, pp. 80–82, Mar. 2000.

[10] J. M. Cioffi et al., “Proposed Scope and Mission for
Dynamic Spectrum Management,” T1E1.4/2001-188R4,
Greensboro, NC, Nov. 2001.

[11] W. Yu, G. Ginis, and J. M. Cioffi, “Distributed Multiuser
Power Control for Digital Subscriber Lines,”IEEE J. Select.
Areas Commun., vol. 20, pp. 1105–1115, June 2002.


